Dual Bias Resistor Transistors ### **NPN Silicon Surface Mount Transistors with Monolithic Bias Resistor Network** ## EMG2DXV5, EMG5DXV5 This new series of digital transistors is designed to replace a single device and its external resistor bias network. The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space. The device is housed in the SOT-553 package which is designed for low power surface mount applications. #### **Features** - Simplifies Circuit Design - · Reduces Board Space - Reduces Component Count - Moisture Sensitivity Level: 1 - Available in 8 mm, 7 inch Tape and Reel - Lead-Free Solder Plating - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant #### MAXIMUM RATINGS (T_A = 25°C unless otherwise noted) | Symbol | Rating | Value | Unit | |------------------|---------------------------|-------|------| | V _{CBO} | Collector-Base Voltage | 50 | Vdc | | V_{CEO} | Collector-Emitter Voltage | 50 | Vdc | | I _C | Collector Current | 100 | mAdc | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### THERMAL CHARACTERISTICS | Symbol | Characteristic | Max | Unit | |-----------------------------------|--|--|------------| | P _D | Total Device Dissipation T _A = 25°C Derate above 25°C | 230 (Note 1)
338 (Note 2)
1.8 (Note 1)
2.7 (Note 2) | mW
°C/W | | $R_{\theta JA}$ | Thermal Resistance –
Junction-to-Ambient | 540 (Note 1)
370 (Note 2) | °C/W | | $R_{ heta JL}$ | Thermal Resistance –
Junction-to-Lead | 264 (Note 1)
287 (Note 2) | °C/W | | T _J , T _{stg} | Junction and Storage
Temperature Range | -55 to +150 | °C | ^{1.} FR-4 @ Minimum Pad ### **NPN SILICON BIAS RESISTOR TRANSISTORS** SOT-553 **CASE 463B** #### MARKING DIAGRAM XX = UF (EMG5) UP (EMG2) M = Date Code = Pb-Free Package (Note: Microdot may be in either location) ### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 6. 1 ^{2.} FR-4 @ 1.0 x 1.0 inch Pad ### **DEVICE MARKING AND RESISTOR VALUES** | Device | Package | Marking | R1 (K) | R2 (K) | |----------|---------|---------|--------|--------| | EMG2DXV5 | SOT-553 | UP | 47 | 47 | | EMG5DXV5 | SOT-553 | UF | 10 | 47 | ### **ELECTRICAL CHARACTERISTICS** (T_A = 25°C unless otherwise noted) | Symbol | Characteristic | Min | Тур | Max | Unit | |--------------------------------|--|---------------|-------------|-------------|------| | FF CHARA | CTERISTICS (Q1 & Q2) | | | | | | I _{CBO} | Collector-Base Cutoff Current (V _{CB} = 50 V, I _E = 0) | _ | - | 100 | nAdc | | I _{CEO} | Collector-Emitter Cutoff Current (V _{CE} = 50 V, I _B = 0) | _ | - | 500 | nAdc | | I _{EBO} | Emitter-Base Cutoff Current (V _{EB} = 6.0 V, I _C = 0) EMG2DXV5 EMG5DXV5 | <u>-</u>
- | -
- | 0.1
0.2 | mAdc | | V _{(BR)CBO} | Collector-Base Breakdown Voltage (I_C = 10 μ A, I_E = 0) | 50 | - | - | Vdc | | V _{(BR)CEO} | Collector-Emitter Breakdown Voltage (Note 3) $(I_C = 2.0 \text{ mA}, I_B = 0)$ | 50 | - | - | Vdc | | N CHARAC | TERISTICS (Q1 & Q2) (Note 3) | | • | • | • | | h _{FE} | DC Current Gain ($V_{CE} = 10 \text{ V}, I_{C} = 5.0 \text{ mA}$) EMG2DXV5 EMG5DXV5 | 80
80 | 140
140 | -
- | | | V _{CE(sat)} | Collector-Emitter Saturation Voltage (IC = 10 mA, I _B = 0.3 mA) | - | - | 0.25 | Vdc | | V _{OL} | $\begin{array}{ll} \text{Output Voltage (on)} \\ (\text{V}_{\text{CC}} = 5.0 \text{ V}, \text{V}_{\text{B}} = 3.5 \text{ V}, \text{R}_{\text{L}} = 1.0 \text{ k}\Omega) \\ (\text{V}_{\text{CC}} = 5.0 \text{ V}, \text{V}_{\text{B}} = 2.5 \text{ V}, \text{R}_{\text{L}} = 1.0 \text{ k}\Omega) \end{array} \qquad \begin{array}{ll} \text{EMG2DXV5} \\ \text{EMG5DXV5} \end{array}$ | -
- | -
- | 0.2
0.2 | Vdc | | V _{OH} | Output Voltage (off) (V _{CC} = 5.0 V, V _B = 0.5 V, R _L = 1.0 k Ω) | 4.9 | - | - | Vdc | | R ₁ | Input Resistor EMG2DXV5 EMG5DXV5 | 32.9
7.0 | 47
10 | 61.1
13 | kΩ | | R ₁ /R ₂ | Resistor Ratio EMG2DXV5
EMG5DXV5 | 0.8
0.17 | 1.0
0.21 | 1.2
0.25 | | ^{3.} Pulse Test: Pulse Width < 300 μs, Duty Cycle < 2.0% Figure 1. Derating Curve ### TYPICAL ELECTRICAL CHARACTERISTICS — EMG2DXV5 Figure 2. $V_{CE(sat)}$ versus I_C Figure 3. DC Current Gain Figure 4. Output Capacitance Figure 5. Output Current versus Input Voltage Figure 6. Input Voltage versus Output Current ### TYPICAL ELECTRICAL CHARACTERISTICS - EMG5DXV5 (continued) Figure 7. $V_{CE(sat)}$ versus I_C Figure 8. DC Current Gain Figure 9. Output Capacitance Figure 10. Output Current versus Input Voltage Figure 11. Input Voltage versus Output Current ### TYPICAL APPLICATIONS FOR NPN BRTS Figure 12. Level Shifter: Connects 12 or 24 Volt Circuits to Logic Figure 13. Open Collector Inverter: Inverts the Input Signal Figure 14. Inexpensive, Unregulated Current Source ### **DEVICE ORDERING INFORMATION** | Device | Package | Shipping [†] | |-------------|----------------------|-----------------------| | EMG2DXV5T1G | SOT-553
(Pb-Free) | 4,000 / Tape & Reel | ### **DISCONTINUED** (Note 4) | EMG2DXV5T5G | SOT-553
(Pb-Free) | 8,000 / Tape & Reel | |-------------|----------------------|---------------------| | EMG5DXV5T1G | SOT-553
(Pb-Free) | 4,000 / Tape & Reel | | EMG5DXV5T5G | SOT-553
(Pb-Free) | 8,000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>. 4. **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The most current information on these devices may be available on www.onsemi.com. #### SOT-553-5 1.60x1.20x0.55, 0.50P CASE 463B ISSUE D **DATE 21 FEB 2024** #### NOTES: - DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018. - ALL DIMENSION ARE IN MILLIMETERS. - 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. | DIM | MILLIMETERS | | | | |-------|-------------|------|------|--| | DIIVI | MIN. | NOM. | MAX. | | | А | 0.50 | 0.55 | 0.60 | | | b | 0.17 | 0.22 | 0.27 | | | С | 0.08 | 0.13 | 0.18 | | | D | 1.55 | 1.60 | 1.65 | | | Е | 1.15 | 1.20 | 1.25 | | | е | 0.50 BSC | | | | | Н | 1.55 | 1.60 | 1.65 | | | L | 0.10 | 0.20 | 0.30 | | #### RECOMMENDED MOUNTING FOOTPRINT* * FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D. # GENERIC MARKING DIAGRAM* XX = Specific Device Code M = Date Code = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | STYLE 1: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR | STYLE 2: PIN 1. CATHODE 2. COMMON ANODE 3. CATHODE 2 4. CATHODE 3 5. CATHODE 4 | STYLE 3:
PIN 1. ANODE 1
2. N/C
3. ANODE 2
4. CATHODE 2
5. CATHODE 1 | STYLE 4: PIN 1. SOURCE 1 2. DRAIN 1/2 3. SOURCE 1 4. GATE 1 5. GATE 2 | STYLE 5: PIN 1. ANODE 2. EMITTER 3. BASE 4. COLLECTOR 5. CATHODE | |--|--|--|--|--| | STYLE 6:
PIN 1. EMITTER 2
2. BASE 2
3. EMITTER 1
4. COLLECTOR 1
5. COLLECTOR 2/BASE 1 | STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR | STYLE 8:
PIN 1. CATHODE
2. COLLECTOR
3. N/C
4. BASE
5. EMITTER | STYLE 9:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. ANODE
5. ANODE | | | DOCUMENT NUMBER: | 98AON11127D | Electronic versions are uncontrolled except when accessed directly from the Document Rep
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|---------------------------------|---|-------------| | DESCRIPTION: | SOT-553-5 1.60x1.20x0.55, 0.50P | | PAGE 1 OF 1 | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales