JN Semiconductor® To k are more about Old Semiconductor, please visit our website at www.onsemi.com Please note. As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com. ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer December 2013 # 74VCX08 Low Voltage Quad 2-Input AND Gate with 3.6V Tolerant **Inputs and Outputs** #### **Features** - 1.2V to 3.6V V_{CC} supply operation - 3.6V tolerant inputs and outputs - - 2.8ns max. for 3.0V to 3.6V V_{CC} - Power-off high impedance inputs and outputs - Static Drive (I_{OH}/I_{OL}) - ±24mA @ 3.0V V_{CC} - Uses proprietary Quiet Series[™] noise/EMI reduction - Latchup performance exceeds 300mA - ESD performance: - Human body model > 2000V - Machine model > 250V - Leadless DQFN package ### **General Description** The VCX08 contains four 2-input and tes. This product is designed for low voltage (2V to 3 V) V_{CC} application cations with I/O compatile .y up to 6V. ## Ordering Ir Juna n | ■ t _{PD} : | | cations with 1/O compatible, by up to 5v. | |---|----------------------|---| | 2.8ns max. for 3.0 | V to 3.6V V_{CC} | The VCX08 is for rice of with an advanced CMOS | | ■ Power-off high impe | | outputs technology to achie hig spe operation while main- | | | | taining low Cr S por r dis pation | | ■ Static Drive (I _{OH} /I _{OL}) | | | | ±24mA @ 3.0V V | | | | Uses proprietary Qu
circuitry | iet Series™ noise | e/EMI reduction A A MENDER OR MATION | | ■ Latchup performanc | e exceeds 300mA | | | ■ ESD performance: | | 1 | | • | al > 2000\/ | | | Human body mod | | NV IR ON" | | Machine model > | 250V | | | ■ Leadless DQFN pag | kage | 10,50 | | | | | | | | | | | | | | Ordering Ir Jun | al 'n | RENTH FO. | | | Package | | | Corn mb | Number | Package Description | | | | | | 'VCX0 1 | M14A | 1/2-Lead Smail Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" | | 1VCX0 1 | √M14A C | 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150"
Narrow | | | 12/0- | Narrow | | 74V JdBQX ⁽¹⁾ | M14A
MLF14A | Narrow 1 4-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), | | 74V JdBQX ^(†) | MLF14A | Narrow 1.7-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), DEDEC MO-241, 2.5 x 3.0mm | | | 12/0- | Narrow 1 4-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), | #### Note: 1. DQFN package available in Tape and Reel only. Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number. All packages are lead free per JEDEC: J-STD-020B standard. # **Connection Diagrams** ### Pin Assignments for SOIC and TSSOP # **Logic Symbol** #### Pad Assignments for DQFN (Tor View Postom view) ### Pin Descr. " | r 'an 3 | escription | |------------------|------------| | . B _n | Inputs | | On | Outputs | | DAP | No Connect | Note: DAP (Die Attach Pad) ### **Absolute Maximum Ratings** Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. | Symbol | Parameter | Rating | |-----------------------------------|--|--------------------------------| | V _{CC} | Supply Voltage | -0.5V to +4.6V | | V _I | DC Input Voltage | -0.5V to 4.6V | | Vo | DC Output Voltage | | | | HIGH or LOW State ⁽²⁾ | -0.5V to V _{CC} +0.5V | | | V _{CC} = 0V | -0.5V to +4.6V | | I _{IK} | DC Input Diode Current, V _I < 0V | -50mA | | I _{OK} | DC Output Diode Current | A 7 75 | | | $V_{O} < 0V$ | -50mA | | | V _o > V _{cc} | +50mA | | I _{OH} / I _{OL} | DC Output Source/Sink Current | +50mA | | I _{CC} or GND | DC V _{CC} or Gound Current per Supply Pin | ±100mA | | T _{STG} | Storage Temperature Range | -35°C to +150°C | #### Note: 2. IO Absolute Maximum Rating must be observe ### Recommended Operation of the Constitution t The Recommended Operating Conditions to Die Lefines the conditions for actual device operation. Recommended operating conditions are seed the ensured operating conditions are seed to be ensured by the datasheat specifications. Fairchild does not recommend exceeding the ensured absolute maximum ratings. | Symbol | Parameter | Rating | |-----------------|---|-----------------------| | V _{CC} | oply Operating | 1.2V to 3.6V | | • | Inp *1/ .age | -0.3V to 3.6V | | V_0 | utput Vollage, HIGH or LOW State | 0V to V _{CC} | | 1/10 | Output Current | A | | | $V_{CC} = 3 \text{ OV to } 3.6 \text{ V}$ | ±24mA | | | $V_{CC} = 2.3V \text{ to } 2.7V$ | ±18mA | | | $V_{CC} = 1.65$ (to 2.3V | ±6mA | | 5 | V _{CC} =).4 V to 1.6V | ±2mA | | · | $V_{CC} = 1.2V$ | ±100μA | | T _A | Free Air Operating Temperature | -40°C to +85°C | | Δt / ΔV | Minimum Input Edge Rate, $V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$ | 10ns/V | #### Note: 3. Floating or unused inputs must be held HIGH or LOW ### **DC Electrical Characteristics** | Symbol | Parameter | V _{CC} (V) | Conditions | Min | Max | Units | |------------------|---------------------------------------|---------------------|---------------------------------------|------------------------|------------------------|-------| | V _{IH} | HIGH Level Input Voltage | 2.7–3.6 | | 2.0 | | V | | | | 2.3–2.7 | | 1.6 | | | | | | 1.65–2.3 | | 0.65 × V _{CC} | | | | | | 1.4–1.6 | | 0.65 × V _{CC} | | | | | | 1.2 | | 0.65 × V _{CC} | | | | V _{IL} | LOW Level Input Voltage | 2.7-3.6 | | | 0.8 | V | | | | 2.3–2.7 | | | 0.7 | | | | | 1.65–2.3 | | | $0.35 \times V_{CC}$ | | | | | 1.4–1.6 | | | 0.3. V _{CC} | | | | | 1.2 | | | 0.05 \ / _{CC} | .6 | | V _{OH} | HIGH Level Output Voltage | 2.7-3.6 | $I_{OH} = -100 \mu A$ | (0-0) | | V | | | | 2.7 | $I_{OH} = -12mA$ | | 11 | D | | | | 3.0 | I _{OH} = -18mA | 2. | SAA | | | | | 3.0 | I _{OH} = -24mA | 2.2 | 7/ | | | | | 2.3–2.7 | I _{OH} = -1t | V _{CC} - C.2 | | | | | | 2.3 | I = mA | 20 | 1-12 | 7 | | | | 2.3 | 1 = -1. A | 1.8 | 10 | | | | | 2 | I _{Oi} = -18n _i A | 17 | 1/1 | | | | | ~5-2. | I _{OH} = -100µA | V _{CC} - 02 | | | | | | 65 | $I_{OH} = - \Im i \gamma_i A$ | 1.25 | | - | | | | 1.4 \.6 | $I_{OH} = -100 \mu A$ | V _{CC} - 0.2 | | | | | | 1.4 | $I_{OH} = -2 \text{rnA}$ | 1.05 | | | | | | 1.2 | Ι _{ΟΗ} = · -100μΑ | V _{CC} - 0.2 | | | | V _{OL} | LOVel C nut V age | 2.7-3.6 | I _C . = 100μ.(| | 0.2 | V | | | | 2.7 | $I_{OL} = 12 \text{mA}$ | | 0.4 | - | | | 70, | 3.0 | J _{OL} = 18mA | | 0.4 | | | | ICE SEAS | 3.0 | I _{OL} = 24mA | | 0.55 | | | | 12,03 | 2 32.7 | I _{OL} = 100μA | | 0.2 | | | | | 2.3 | I _{OL} = 12mA | | 0.4 | | | | The Bridge | 2.3 | I _{OL} = 18mA | | 0.6 | | | | REPRE | 1.65–2.3 | $I_{OL} = 100 \mu A$ | | 0.2 | | | SVI | | 1.65 | I _{OL} = 6mA | | 0.2 | | | | RV | 1.4–1.6 | I _{OL} = 100μA | | 0.2 | - | | | | 1.4 | $I_{OL} = 2mA$ | | 0.35 | | | | | 1.2 | I _{OL} = 100μA | | 0.05 | | | l _l | Input Leakage Current | 1.2–3.6 | $0 \le V_1 \le 3.6V$ | | ±5.0 | μA | | I _{OFF} | Power-OFF Leakage Current | 0 | $0 \le (V_I, V_O) \le 3.6V$ | | 10 | μA | | I _{CC} | Quiescent Supply Current | 1.2–3.6 | $V_I = V_{CC}$ or GND | | 20 | μA | | | | | $V_{CC} \le V_I \le 3.6V$ | | ±20 | | | Δl _{CC} | Increase in I _{CC} per Input | 2.7–3.6 | $V_{IH} = V_{CC} - 0.6V$ | | 750 | μA | # AC Electrical Characteristics⁽⁴⁾ | | | | | T _A = -40°C to
+85°C | | | Figure | |---------------------------------------|---------------------|---------------------|---------------------------------|------------------------------------|------|-------|--------| | Symbol | Parameter | V _{CC} (V) | Conditions | Min. | Max. | Units | Number | | t _{PHL} , t _{PLH} | Propagation Delay | 3.3 ± 0.3 | $C_L = 30 pF, R_L = 500 \Omega$ | 0.6 | 2.8 | ns | Fig. 1 | | | | 2.5 ± 0.2 | | 0.8 | 3.7 | | Fig. 2 | | | | 1.8 ± 0.15 | | 1.0 | 7.4 | | | | | | 1.5 ± 0.1 | $C_L = 15pF, R_L = 2k\Omega$ | 1.0 | 14.8 | | Fig. 3 | | | | 1.2 | | 1.5 | 37.0 | | Fig. 4 | | t _{OSHL} , t _{OSLH} | Output to Output | 3.3 ± 0.3 | $C_L = 30 pF, R_L = 500 \Omega$ | | 0.5 | | | | | Skew ⁽⁵⁾ | 2.5 ± 0.2 | | | 0.5 | | | | | | 1.8 ± 0.15 | | | .15 | | 1,5 | | | | 1.5 ± 0.1 | $C_L = 15pF, R_L = 2k\Omega$ | | | | OF | | | | 1.2 | 4 | | 5 | 2 | | #### Note: - 4. For $C_1 = 50$ pF, add approximately 300ps to the AC Maximum ocific. - propagation delay for any two separate 5. Skew is defined as the absolute value of the difference be seen the outputs of the same device. The specification applier any true switching in the same direction, either HIGH-to-LOW (tosh) or LOW-to-HIGH (tosh). # Dynamic Switching Characterismo. | | | "VIII | 10,100 | $T_A = 25^{\circ}C$ | | |------------------|---|---------------------|--------------------------------------|---------------------|------| | Symbol | am. pr | V _{CC} (V) | Conditions | Typical | Unit | | V _{OLP} | Quiet Ou It Dynamic Peak VCC | | $C_L = 30 \text{pr} V_{IH} = V_{CC}$ | 0.25 | V | | | C | 2.5 | V _{I.} = 0V | 0.6 | | | | | 3.3 | | 0.8 | | | | Qu' fut Dynamic Valley Vol | 1.8 | $C_L = 30pF, V_{IH} = V_{CC},$ | -0.25 | V | | | 15,56,4 | 2.5 | $V_{IL} = 0V$ | -0.6 | | | | CE, CK, CK, | 3.3 | | -0.8 | | | V_{OHV} | Quiet Outrut Dynamic Valley V _{OH} | 1.8 | $C_L = 30pF, V_{IH} = V_{CC},$ | 1.5 | V | | OE) | 22 | 2.5 | $V_{IL} = 0V$ | 1.9 | | | CV | | 3.3 | | 2.2 | | ## Capacitance | | | | T _A = +25°C | | |------------------|----------------------------------|--|------------------------|-------| | Symbol | Parameter | Conditions | Typical | Units | | C _{IN} | Input Capacitance | $V_{I} = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$ | 6.0 | pF | | C _{OUT} | Output Capacitance | $V_{I} = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$ | 7.0 | pF | | C _{PD} | Power Dissipation
Capacitance | $V_I = 0V \text{ or } V_{CC}, f = 10MHz, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$ | 20.0 | pF | # AC Loading and Waveforms (V_{CC} 3.3V \pm 0.3V to 1.8V \pm 0.15V) | Test | Switch | |-------------------------------------|--------| | t _{PLH} , t _{PHL} | Open | Figure 1. AC Test Circuit | | | are a | Vcc | | |---|-----------------|-------------|---------------------|---------------------| | | lor "" | 3.3V ± 0.3V | 2.5V < 0.2V | 1.8V ± 0.15V | | | V _{mi} | 1.5V | V _{CC} / 2 | V _{CC} / 2 | | 1 | Vino | 1.5V | V _{CC} /2 | V _{CC} / 2 | Figure 7. Waveform for Inverting and Non-inverting Functions # AC Loading and Waveforms (V_{CC} 1.5 \pm 0.1V to 1.2V) | Test | Switch | |-------------------------------------|---| | t _{PLH} , t _{PHL} | Open | | t _{PZL} , t _{PLZ} | $V_{CC} \times 2$ at $V_{CC} = 1.5V \pm 0.1V$ | | t _{PZH} , t _{PHZ} | GND | Figure 3. AC Test Circu | RAN | Vcc | |-----------------|---------------------| | Symbol | 1.5V ± 0.1V | | V _{mi} | V _{CC} / 2 | | V _{mo} | V _{CC} / 2 | Figure 4. Wavelorm for Inverting and Non-Inverting Functions ### **Tape and Reel Specification** #### **Tape Format for DQFN** | Package Designator | Tape Section | Number of Cavities | Cavity Status | Cover Tape Status | | |--------------------|--------------------|--------------------|---------------|-------------------|--| | BQX | Leader (Start End) | 125 (Typ.) | Empty | Sealed | | | | Carrier | 3000 | Filled | Sealed | | | | Trailer (Hub End) | 75 (Typ.) | Empty | Sealed | | ### Tape Dimensions inches (millimeters) NOTES: unless otherwisconified - 1. Cummulative pitc for feeding how a cavifies (chip pockets) not to exceed 0.000[0.20] over 10 pitch span. - 2. Smallest allowable ending reus. - 3. Thru h made ca is cer red within carity. - 4. Tolerable is 10002 these timensions on all 125 m tapes. - 5. and don a plang 0 120[0.30] above the bottom of the pocket. - 6. k heasured from a plane on the inside bottom of the pocket to the top surface of the carrier. - Pour tipe additive to spir cket hole measured as true position of pocket. Not pocket hole. - ont, ing dimension is millimeter. Die hension in incher rounded. ### Ree. __nensions inches (milirieters) | Tape Size | Α | В | С | D | N | W1 | W2 | |-----------|--------------|--------------|---------------|---------------|---------------|--------------|--------------| | 12mm | 13.0 (330.0) | 0.059 (1.50) | 0.512 (13.00) | 0.795 (20.20) | 2.165 (55.00) | 0.488 (12.4) | 0.724 (18.4) | #### NOTES: - A. CONFORMS TO JEDEC REGISTRATION MO-241, VARIATION AA - B. DIMENSIONS ARE IN MILLIMETERS. - C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009. - D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN. - E. DRAWING FILENAME: MKT-MLP14Arev2. ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor nakes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnif #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative