Switch-mode Power Rectifier # **BYV32-200** ## **Features and Benefits** - Low Forward Voltage - Low Power Loss/High Efficiency - High Surge Capacity - 175°C Operating Junction Temperature - 16 A Total (8 A Per Diode Leg) - These Devices are Pb-Free and are RoHS Compliant* # **Applications** - Power Supply Output Rectification - Power Management - Instrumentation ## **Mechanical Characteristics** - Case: Epoxy, Molded - Epoxy Meets UL 94 V-0 @ 0.125 in - Weight: 1.9 Grams (Approximately) - Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable - Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds - ESD Rating: Human Body Model 3B Machine Model C # ULTRAFAST RECTIFIER 16 AMPERES, 200 VOLTS t_{rr} = 35 ns # MARKING DIAGRAM TO-220 CASE 221A STYLE 6 = Assembly Location Y = Year WW = Work Week BYV32-200 = Device Code G = Pb-Free Package AKA = Diode Polarity # **ORDERING INFORMATION** | Device | Package | Shipping | |------------|---------------------|-----------------| | BYV32-200G | TO-220
(Pb-Free) | 50 Units / Rail | 1 ^{*}For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### BYV32-200 #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|---|-------------|------| | Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage | V _{RRM}
V _R WM
V _R | 200 | V | | Average Rectified Forward Current, T _C = 156°C Per Leg Total Device | I _{F(AV)} | 8.0
16 | А | | Peak Rectified Forward Current (Square Wave, 20 kHz), $T_C = 154^{\circ}C$ – Per Diode Leg | I _{FM} | 16 | А | | Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz) | I _{FSM} | 100 | А | | Operating Junction Temperature and Storage Temperature | T _J , T _{stg} | -65 to +175 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. # THERMAL CHARACTERISTICS | Characteristic | Conditions | Symbol | Value | Unit | |---|------------|-----------------|-------|------| | Maximum Thermal Resistance, Junction-to-Case | Min. Pad | $R_{\theta JC}$ | 3.0 | °C/W | | Maximum Thermal Resistance, Junction-to-Ambient | Min. Pad | $R_{\theta JA}$ | 60 | | ## **ELECTRICAL CHARACTERISTICS** | Characteristic | Symbol | Min | Typical | Max | Unit | |--|-----------------|--------|--------------|--------------|------| | Instantaneous Forward Voltage (Note 1)
($i_F = 5.0 \text{ A}$, $T_j = 100^{\circ}\text{C}$)
($i_F = 20 \text{ A}$, $T_j = 25^{\circ}\text{C}$) | VF | -
- | 0.74
1.01 | 0.85
1.15 | ٧ | | Instantaneous Reverse Current (Note 1) (Rated dc Voltage, $T_j = 100^{\circ}\text{C}$) (Rated dc Voltage, $T_j = 25^{\circ}\text{C}$) | İR | -
- | 21
3.5 | 600
50 | μΑ | | Maximum Reverse Recovery Time (I _F = 1.0 A, di/dt = 50 A/ μ s) (I _F = 0.5 A, I _R = 1.0 A, I _{REC} = 0.25 A) | t _{rr} | -
- | | 35
25 | ns | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. ^{1.} Pulse Test: Pulse Width = 300 s, Duty Cycle ≤ 2.0% Figure 1. Typical Forward Voltage, Per Leg Figure 4. Current Derating, Case, Per Leg Figure 2. Maximum Forward Voltage Figure 3. Typical Reverse Current, Per Leg* * The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if V_R is sufficiently below rated V_R. Figure 5. Current Derating, Ambient, Per Leg Figure 6. Power Dissipation, Per Leg Figure 7. Typical Capacitance, Per Leg Figure 8. Thermal Response, Junction-to-Ambient **DATE 13 JAN 2022** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009. - 2. CONTROLLING DIMENSION: INCHES - 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. #### 4. MAX WIDTH FOR F102 DEVICE = 1.35MM | | INCHES | | MILLIMETERS | | |-----|--------|-------|-------------|-------| | DIM | MIN. | MAX. | MIN. | MAX. | | Α | 0.570 | 0.620 | 14.48 | 15.75 | | В | 0.380 | 0.415 | 9.66 | 10.53 | | С | 0.160 | 0.190 | 4.07 | 4.83 | | D | 0.025 | 0.038 | 0.64 | 0.96 | | F | 0.142 | 0.161 | 3.60 | 4.09 | | G | 0.095 | 0.105 | 2.42 | 2.66 | | Н | 0.110 | 0.161 | 2.80 | 4.10 | | J | 0.014 | 0.024 | 0.36 | 0.61 | | К | 0.500 | 0.562 | 12.70 | 14.27 | | L | 0.045 | 0.060 | 1.15 | 1.52 | | N | 0.190 | 0.210 | 4.83 | 5.33 | | Q | 0.100 | 0.120 | 2.54 | 3.04 | | R | 0.080 | 0.110 | 2.04 | 2.79 | | S | 0.045 | 0.055 | 1.15 | 1.41 | | Т | 0.235 | 0.255 | 5.97 | 6.47 | | U | 0.000 | 0.050 | 0.00 | 1.27 | | V | 0.045 | | 1.15 | | | Z | | 0.080 | | 2.04 | | STYLE 1:
PIN 1.
2.
3.
4. | BASE
COLLECTOR
EMITTER
COLLECTOR | STYLE 2:
PIN 1.
2.
3.
4. | | STYLE 3:
PIN 1.
2.
3.
4. | ANODE
GATE | STYLE 4:
PIN 1.
2.
3.
4. | MAIN TERMINAL 1
MAIN TERMINAL 2
GATE
MAIN TERMINAL 2 | |--------------------------------------|---|---------------------------------------|------------------|---------------------------------------|------------------|--------------------------------------|---| | STYLE 5:
PIN 1.
2.
3.
4. | GATE
DRAIN
SOURCE
DRAIN | STYLE 6:
PIN 1.
2.
3.
4. | CATHODE
ANODE | STYLE 7:
PIN 1.
2.
3.
4. | ANODE
CATHODE | 2.
3. | CATHODE
ANODE
EXTERNAL TRIP/DELAY
ANODE | | STYLE 9:
PIN 1.
2.
3.
4. | GATE
COLLECTOR
EMITTER
COLLECTOR | STYLE 10:
PIN 1.
2.
3.
4. | GATE | STYLE 11:
PIN 1.
2.
3.
4. | DRAIN
SOURCE | STYLE 12
PIN 1.
2.
3.
4. | MAIN TERMINAL 1
MAIN TERMINAL 2 | | DOCUMENT NUMBER: | 98ASB42148B | Electronic versions are uncontrolled except when accessed directly from the Document Reposito
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-------------|--|-------------|--|--| | DESCRIPTION: | TO-220 | | PAGE 1 OF 1 | | | onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales