www.vishay.com Vishay Siliconix

Low-Power, High-Speed CMOS Analog Switches

DESCRIPTION

The DG401B, DG403B, DG405B monolithic analog switches are replacements for the popular DG401, DG403, DG405 analog switches and provide improved performance, combining high speed (t_{on}: 100 ns, typ.) with low power consumption make the DG401B series ideal for portable and battery powered applications.

Built on the Vishay Siliconix proprietary high-voltage silicon gate process to achieve high voltage rating and superior switch on/off performance, break-before-make is guaranteed for the SPDT configurations.

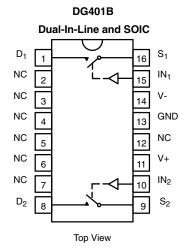
Each switch conducts equally well in both directions when on, and blocks up to 30 V peak-to-peak when off. On-resistance is very flat over the full \pm 15 V analog range. The DG401B has two independent SPST switches. The DG403B has four SPST switches in NO/NC combinations. The DG405B has four switches in two SPST pairs (see Functional Block Diagrams and Pin Configurations)

The DG401B, DG403B, DG405B is available in both 16-pin plastic dip and 16-pin SOIC packages.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. For analog switching products manufactured with 100 % matte tin device terminations, the lead (Pb)-free "-E3" suffix is being used as a designator.

FEATURES

- 44 V supply max rating
- ± 15 V analog signal range
- On-resistance $R_{DS(on)}$: 23 Ω
- Low leakage I_{D(on)}: 40 pA
- Fast switching t_{on}: 100 ns
- Upgrade to DG401B, DG403B, DG405B
- TTL, CMOS compatible
- Single supply capability


APPLICATIONS

- · Audio and video switching
- Sample-and-hold circuits
- Test equipment
- PBX, PABX

BENEFITS

- Wide dynamic range
- Break-before-make switching action (DG403B only)
- Simple interfacing

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

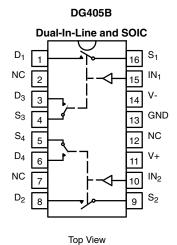
Two SPST Switches per Package

TRUTH TABLE			
LOGIC	SWITCH		
0	Off		
1	On		

Note

• Logic "0" ≤ 0.8 V Logic "1" ≥ 2.4 V

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION


DG403B Dual-In-Line and SOIC D_1 S_1 16 NC IN₁ V- D_3 14 S_3 **GND** S₄ NC 5 D_4 6 NC IN_2 S_2 D_2 9 Top View

Four SPST Switches in Two Pairs per Package

TRUTH TABLE				
LOGIC	SW1, SW2	SW3, SW4		
0	Off	On		
1	On	Off		

Note

Logic "0" ≤ 0.8 V Logic "1" ≥ 2.4 V

Four SPST Switches in Two Pairs per Package

TRUTH TABLE				
LOGIC	SWITCH			
0	Off			
1	On			

Note

Logic "0" ≤ 0.8 V Logic "1" ≥ 2.4 V

ORDERING INFORMATION						
STANDARD COMMERCIAL LEAD (Pb)-FREE COMMERCIAL PART NUMBER PART NUMBER		PACKAGE	TEMP. RANGE			
DG401BDJ	DG401BDJ-E3					
DG403BDJ	DG403BDJ-E3	16-pin plastic Dip				
DG405BDJ	DG405BDJ-E3					
DG401BDY	DG401BDY-E3					
DG403BDY	DG403BDY-E3	16-pin narrow SOIC	-40 °C to +85 °C			
DG405BDY DG405BDY-E3						
DG401BDY-T1	DG401BDY-T1-E3	10				
DG403BDY-T1	DG403BDY-T1-E3	16-pin narrow SOIC with tape and reel				
DG405BDY-T1	DG405BDY-T1-E3	1001				

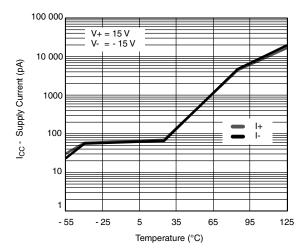
ADOUGH INAXIMOM II	ATINGS ($T_A = 25 ^{\circ}\text{C}$, unless o	tiloi viido riotoaj	ı	
PARAMETER		LIMIT	UNIT	
V+ to V-		44		
GND to V-		25	V	
Digital inputs ^a , V _S , V _D		(V-) - 0.3 V to (V+) + 0.3 V or 30 mA, whichever occurs first		
Continuous current (any terminal)		30	mA	
Peak current, S or D (pulsed at 1 ms, 10 % duty)		100	IIIA	
Storage temperature	(DJ, DY suffix)	- 65 to +125	°C	
Power dissipation (package) b	16-pin plastic DIP ^c	450	mW	
Power dissipation (package)	16-pin SOIC d	600	IIIVV	

- a. Signals on S_X, D_X, or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings b. All leads welded or soldered to PC board

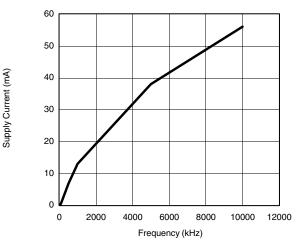
- c. Derate 6 mW/°C above 75 °C d. Derate 7.6 mW/°C above 75 °C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

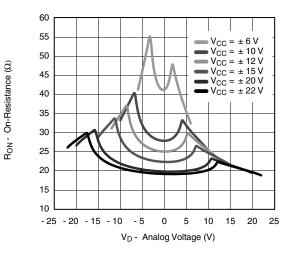
www.vishay.com

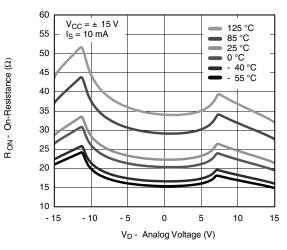

Vishay Siliconix

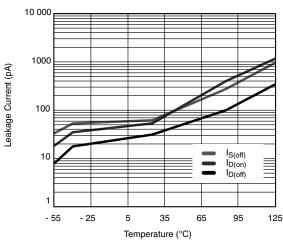
SPECIFICATIONS a							
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS SPECIFIED	TEMP.b	D SUFFIX -40 °C TO +85 °C		UNIT	
	011111502	V+ = 15 V, V- = -15 V, V _{IN} = 2.4 V, 0.8 V ^f		MIN. d	TYP. c	MAX. d	
Analog Switch							
Analog signal range ^e	V _{ANALOG}		Full	-15	-	15	V
Drain-source on-resistance	R _{DS(on)}	$I_S = -10 \text{ mA}, V_D = \pm 10 \text{ V},$	Room	-	23	45	
Dialii-source off-resistance	1 DS(on)	V+ = 13.5 V, V- = -13.5 V	Full	-	-	55	Ω
Δ drain-source on-resistance	$\Delta R_{DS(on)}$	$I_S = -10 \text{ mA}, V_D = \pm 5 \text{ V}, 0 \text{ V},$	Room	-	0.72	3	22
A drain source on resistance	Δi iDS(on)	V+ = 16.5 V, V- = -16.5 V	Full	-	1	5	
	la. s		Room	-0.5	-0.01	0.5	
Switch Off Leakage Current	I _{S(off)}	V+ = 16.5, V-= -16.5 V,	Hot	-5	1	5	
Switch On Leakage Current	I	$V_D = \pm 15.5 \text{ V}, V_S = \pm 15.5 \text{ V}$	Room	-0.5	-0.01	0.5	nA
	I _{D(off)}		Hot	-5	ı	5	IIA
Channel on leakage current	1	V+ = 16.5 V, V-= -16.5 V,	Room	-1	-0.04	1	
Charmer on leakage current	I _{D(on)}	$V_S = V_D = \pm 15.5 \text{ V}$	Hot	-10	-	10	1
Digital Control							
Input, high voltage	I _{IL}	V _{IN} under test = 0.8 V, all other = 2.4 V	Full	-1	0.005	1	μА
Input, low voltage	I _{IH}	V _{IN} under test = 2.4 V, all other = 0.8 V	Full	-1	0.005	1	
Dynamic Characteristics							
Turn-on time	t _{on}	$R_L = 300 \Omega, C_L = 35 pF,$	Room	-	100	150	
Turn-off time	t _{off}	see Fig. 2	Room	-	60	100	ns
Break-before-make time delay (DG403B)	t _D	$R_L = 300 \ \Omega, \ C_L = 35 \ pF$	Room	5	12	-	113
Charge injection	Q	$C_L = 10\ 000\ pF,\ V_{gen} = 0\ V,\ R_{gen} = 0\ \Omega$	Room	-	60	-	рС
Off isolation reject ratio	OIRR	RL = 100 W, CL = 5 pF, f =1 MHz	Room	-	-81.7	-	dB
Channel-to-channel crosstalk	X _{TALK}	RL = 100 W, CL = 5 pr, I = I MHZ	Room	-	-94.8	-	иь
Source off capacitance	C _{S(off)}		Room	-	12	-	
Drain off capacitance	C _{D(off)}	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$	Room	-	12	=	pF
Channel on capacitance	C _D , C _{S(on)}		Room	-	39	-	
Power Supplies							
Docitivo Supply Current	I+	V+ = 16.5 V V- = -16.5 V	Room	-	0.250	0.5	
Positive Supply Current	I+		Full	-	-	1	Ī
No mating Command	I- V-		Room	-0.5	0.25	-	
Negative Supply Current		$V_{IN} = 0 \text{ V or } 5 \text{ V}$	Full	-1	-	-	mA
Cround current		1	Room	-0.5	0.25	-	
Ground current			Full	-1	-	-	

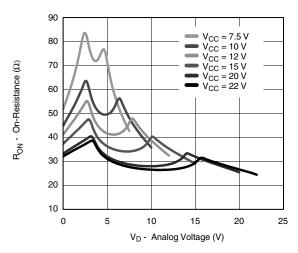

Notes

- a. Refer to PROCESS OPTION FLOWCHART
- b. Room = 25 $^{\circ}$ C, full = as determined by the operating temperature suffix
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
- e. Guaranteed by design, not subject to production test
- f. V_{IN} = input voltage to perform proper function

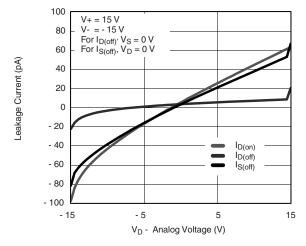

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Supply Current vs. Temperature

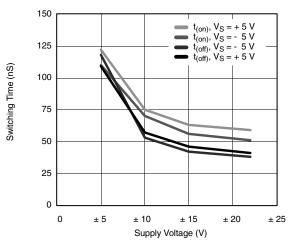

Supply Current vs. Switching Frequency


R_{ON} vs. Analog Voltage and Supply Voltage

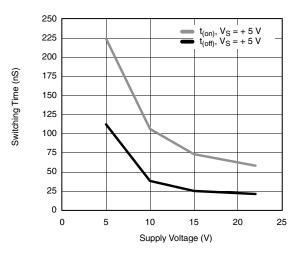
R_{ON} vs. Analog Voltage and Temperature

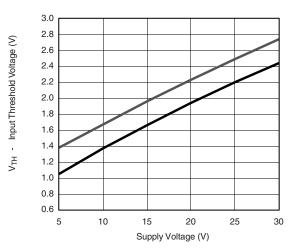


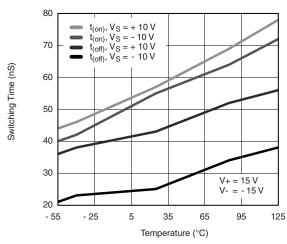
Leakage Current vs. Temperature

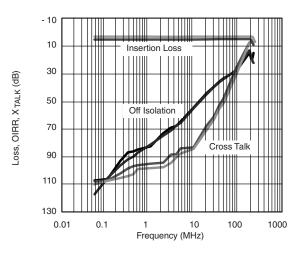


R_{ON} vs. Analog Voltage and Single Supply

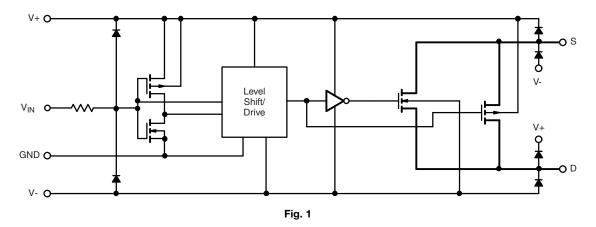

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Leakage Current vs. Analog Voltage


Switching Time vs. Supply Voltage


Switching Time vs. Single Supply Voltage

Input Switching Threshold vs. Supply


Switching Time vs. Temperature

Insertion Loss, Off -Isolation Crosstalk vs. Frequency

SCHEMATIC DIAGRAM (typical channel)

TEST CIRCUITS

V_O is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the output waveform.

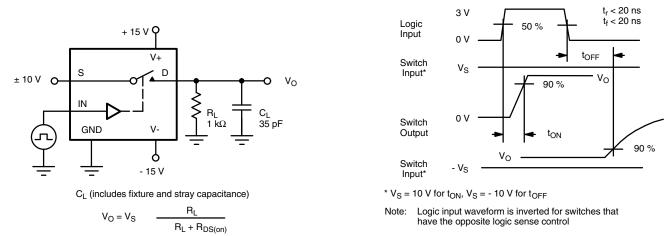


Fig. 2 - Switching Time

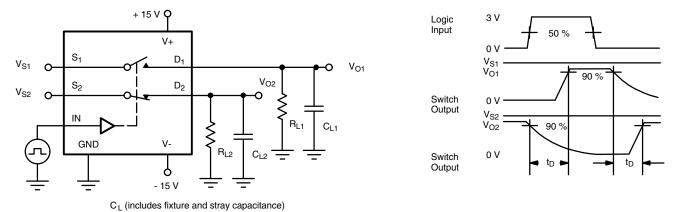
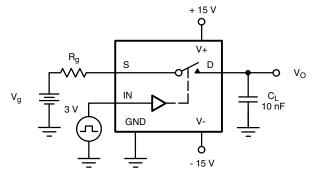



Fig. 3 - Break-Before-Make

TEST CIRCUITS

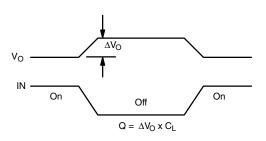


Fig. 4 - Charge Injection

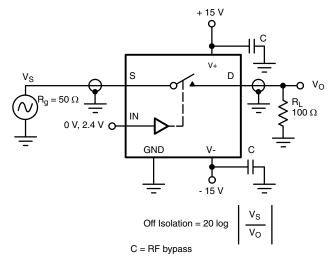


Fig. 5 - Off Isolation

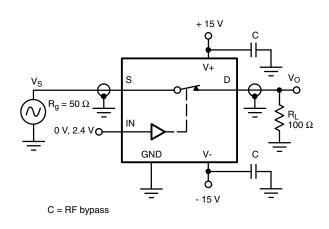


Fig. 7 - Insertion Loss

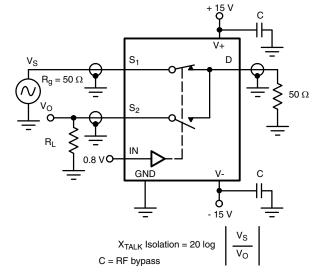


Fig. 6 - Crosstalk

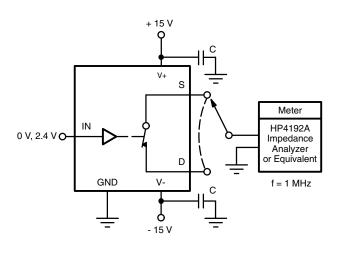


Fig. 8 - Capacitances

APPLICATIONS

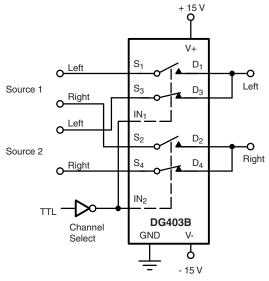


Fig. 9 - Stereo Source Selector

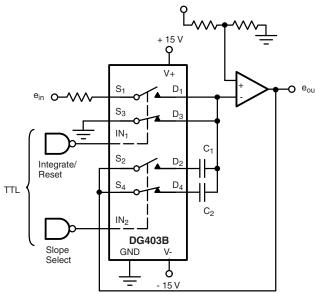


Fig. 10 - Dual Slope Integrator

Dual Slope Integrators

The DG403B is well suited to configure a selectable slope integrator. One control signal selects the timing capacitor C_1 or C_2 . Another one selects e_{in} or discharges the capacitor in preparation for the next integration cycle.

Band-Pass Switched Capacitor Filter

Single-pole double-throw switches are a common element for switched capacitor networks and filters. The fast switching times and low leakage of the DG403B allow for higher clock rates and consequently higher filter operating frequencies.

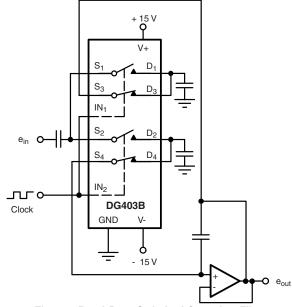


Fig. 11 - Band-Pass Switched Capacitor Filter

Peak Detector

 A_3 acting as a comparator provides the logic drive for operating $SW_1.$ The output of A_2 is fed back to A_3 and compared to the analog input $e_{\rm in}.$ If $e_{\rm in}>e_{\rm out}$ the output of A_3 is high keeping SW_1 closed. This allows C1 to charge up to the analog input voltage. When $e_{\rm in}$ goes below $e_{\rm out}$ A_3 goes negative, turning SW_1 off. The system will therefore store the most positive analog input experienced.

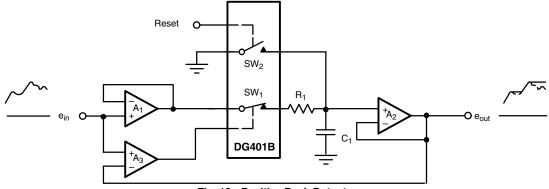
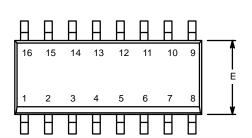


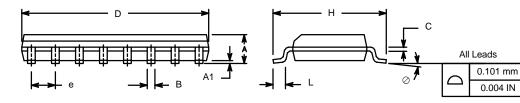
Fig. 12 - Positive Peak Detector

www.vishay.com

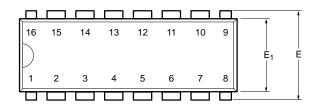

Vishay Siliconix

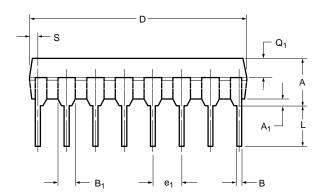
PRODUCT SUMMARY	1					
Part number	DG401B	DG401B	DG403B	DG403B	DG405B	DG405B
Status code	2	2	2	2	2	2
Configuration	SPST x 2, NO	SPST x 2, NO	SPST x 4, comp, two pairs	SPST x 4, comp, two pairs	SPST x 4, NO, two pairs	SPST x 4, NO, two pairs
Single supply min. (V)	5	5	5	5	5	5
Single supply max. (V)	36	36	36	36	36	36
Dual supply min. (V)	5	5	5	5	5	5
Dual supply max. (V)	22	22	22	22	22	22
On-resistance (Ω)	23	23	23	23	23	23
Charge injection (pC)	60	60	60	60	60	60
Source on capacitance (pF)	39	39	39	39	39	39
Source off capacitance (pF)	12	12	12	12	12	12
Leakage switch on typ. (nA)	0.04	0.04	0.04	0.04	0.04	0.04
Leakage switch off max. (nA)	0.5	0.5	0.5	0.5	0.5	0.5
-3 dB bandwidth (MHz)	-	-	-	-	-	-
Package	Plastic DIP-16	SO-16 (narrow) AS	Plastic DIP-16	SO-16 (narrow) AS	Plastic DIP-16	SO-16 (narrow) AS
Functional circuit / applications	Multi purpose, instrumentation medical and healthcare					
Interface	Parallel	Parallel	Parallel	Parallel	Parallel	Parallel
Single supply operation	Yes	Yes	Yes	Yes	Yes	Yes
Dual supply operation	Yes	Yes	Yes	Yes	Yes	Yes
Turn on time max. (ns)	150	150	150	150	150	150
Crosstalk and off isolation	-94.8	-94.8	-94.8	-94.8	-94.8	-94.8

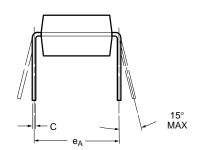
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg273069.



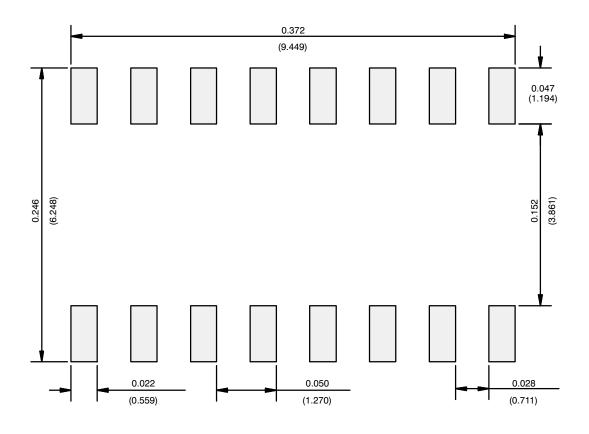
SOIC (NARROW): 16-LEAD JEDEC Part Number: MS-012


	MILLIMETERS		INC	NCHES	
Dim	Min	Max	Min	Max	
Α	1.35	1.75	0.053	0.069	
A ₁	0.10	0.20	0.004	0.008	
В	0.38	0.51	0.015	0.020	
С	0.18	0.23	0.007	0.009	
D	9.80	10.00	0.385	0.393	
E	3.80	4.00	0.149	0.157	
е	1.27	BSC	0.050	BSC	
Н	5.80	6.20	0.228	0.244	
L	0.50	0.93	0.020	0.037	
0	0°	8°	0°	8°	
ECN: S-03946—Rev. F, 09-Jul-01					


DWG: 5300



PDIP: 16-LEAD


	MILLIMETERS		INC	HES	
Dim	Min	Max	Min	Max	
Α	3.81	5.08	0.150	0.200	
A ₁	0.38	1.27	0.015	0.050	
В	0.38	0.51	0.015	0.020	
B ₁	0.89	1.65	0.035	0.065	
С	0.20	0.30	0.008	0.012	
D	18.93	21.33	0.745	0.840	
E	7.62	8.26	0.300	0.325	
E ₁	5.59	7.11	0.220	0.280	
e ₁	2.29	2.79	0.090	0.110	
e _A	7.37	7.87	0.290	0.310	
L	2.79	3.81	0.110	0.150	
Q ₁	1.27	2.03	0.050	0.080	
S	0.38	1.52	.015	0.060	
ECN: S-03946—Rev. D, 09-Jul-01					

DWG: 5482

Document Number: 71261 www.vishay.com 06-Jul-01

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Ш

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.