

GBL6005 thru GBL610

Rh

RoHS COMPLIANT

142 (3.6)

.043 (1.1)

.035 (0.9)

.045 (1.14) .024 (0.60)

Glass Passivated Bridge Rectifiers

Reverse Voltage - 50 to 1000 Volts Forward Current - 6.0 Amperes

.44 (11.2)

.42 (10.7)

<u>.56 (14.2)</u> .50 (12.7)

.035 (0.90)

Dimensions in inches and (milimeters)

.81 (20.6)

.77 (19.6)

210 .190 (5.3) (4.8)

210 190 (5 3) .210 .190 (5.3) (4.8)

- Glass passivated chip
- Low forward voltage drop
- Ideal for printed circuit board
- High surge current capability
- •Meet UL flammability classification 94V-0

Mechanical Data

- Polarity: Symbol marked on body
- Mounting position: Any

Note: Products with logo

are made by HY Electronic (Cayman) Limited.

Applications

• General purpose use in AC/DC bridge full wave rectification, for SMPS, lighting ballaster, adapter, etc.

Maximum Ratings and Electrical Characteristics

Rating at $25\,^\circ\!C$ ambient temperature unless otherwise specified.

Single phase, half wave ,60Hz, resistive or inductive load.

For capacitive load, derate current by 20%

SYMBOL	GBL6005	GBL601	GBL602	GBL604	GB6L06	GBL608	GBL610	UNIT
Vrrm	50	100	200	400	600	800	1000	V
Vrms	35	70	140	280	420	560	700	V
Vdc	50	100	200	400	600	800	1000	V
I(AV)	6.0						А	
Ігѕм	150							A
l ² t	93.37						A ² s	
VF	1.0							V
lr	10.0						μA	
lr	1.0						mA	
Rejc	4.7						°C/W	
TJ	-55 to +150						°C	
Тѕтс	-55 to +150							°C
	VRRM VRMS VDC I(AV) IFSM I ² t VF IR IR ReJC TJ	VRRM 50 VRMS 35 VDC 50 I(AV)	VRRM 50 100 VRMS 35 70 VDC 50 100 I(AV)	VRRM 50 100 200 VRMS 35 70 140 VDC 50 100 200 I(AV) 100 200 I(AV)	VRRM 50 100 200 400 VRMS 35 70 140 280 VDC 50 100 200 400 I(AV) 50 100 50 6.0 IFSM 50 150 150 150 IFSM 50 100 10.0 10.0 IR 10.0 1.0 1.0 Rejc 50 1.0 1.0	VRRM 50 100 200 400 600 VRMS 35 70 140 280 420 VDC 50 100 200 400 600 I(AV) 50 100 200 50 6.0 IFSM 50 50 150 50 50 IFSM 50 50 150 50 50 VF 50 50 1.0 50 50 IR 1.0 1.0 1.0 50 50 50 ReJC -55 to +150 50 50 50 50 50	VRRM 50 100 200 400 600 800 VRMS 35 70 140 280 420 560 VDC 50 100 200 400 600 800 I(AV) 50 100 200 400 600 800 I(AV) 50 100 200 400 600 800 I(AV) 50 100 200 400 600 800 I(AV) 50 100 50 50 50 IFSM 50 50 50 50 50 I* 33.37 1.0 50	VRRM 50 100 200 400 600 800 1000 VRMS 35 70 140 280 420 560 700 VDC 50 100 200 400 600 800 1000 I(AV) 50 50 100 50 50 100 50 100 IFSM 5 53 50 150 50

2GBJ

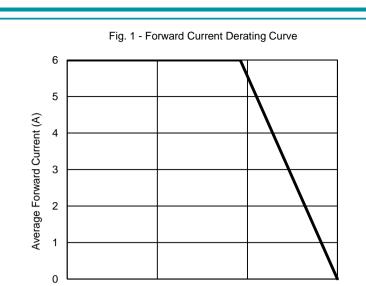
.098 (2.5)

*45° Chamfer

.059 (1.5)

.051 (1.3)

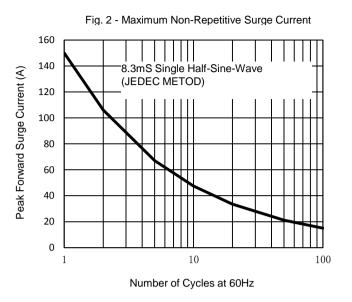
.106 (2.7)

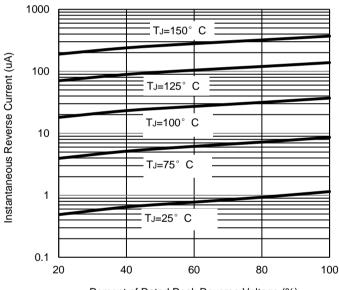

.091 (2.3)

Note:1.Mounting conditions,0.5" lead length maximum.

2. The typical data above is for reference only .

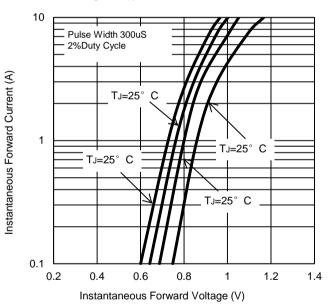
Rating and Characteristic Curves GBL6005 thru GBL610




Fig. 3 - Typical Reverse Characteristics

100

150


50

0

Percent of Rated Peak Reverse Voltage (%)

Fig. 4 - Typical Forward Characteristics

Disclaimer

ALL specifications and data are subject to be changed without notice to improve reliability function or design or other reasons.

HY makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the cotinuing production of any product. To the maximum extent permitted by applicable law, HY disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on HY's knowledge of typical requirements that are often placed on HY products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application.Parameters provided in datasheets and specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify HY's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, HY products are not designed for use in medical, life-saving, or life-sustaining applications or for any other applications in which the failure of the HY product could result in personal injury or death. Customers using or selling HY products not expressly indicated for use in such applications do so at their own risk.Please contact authorized HY personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of HY. Product names and markings noted herein may be trademarks of their respective owners.