Vishay Semiconductors # **Two-Line ESD-Protection in LLP75** #### **Features** - Two-line ESD-protection device - ESD-immunity acc. IEC 61000-4-2 ± 30 kV contact discharge - ± 30 kV air discharge - Space saving LLP package - Lead (Pb)-free component - Lead finish = "e3" = matte tin (Sn) - Non-magnetic - "Green" molding compound - Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC #### Marking (example only) Dot = Pin 1 marking XX = Date code YY = Type code (see table below) ### **Ordering Information** | Device name | Ordering code | Taped units per reel
(8 mm tape on 7" reel) | Minimum order quantity | |-------------|------------------|--|------------------------| | GSOT03C-HT3 | GSOT03C-HT3-GS08 | 3000 | 15000 | | GSOT04C-HT3 | GSOT04C-HT3-GS08 | 3000 | 15000 | | GSOT05C-HT3 | GSOT05C-HT3-GS08 | 3000 | 15000 | | GSOT08C-HT3 | GSOT08C-HT3-GS08 | 3000 | 15000 | | GSOT12C-HT3 | GSOT12C-HT3-GS08 | 3000 | 15000 | | GSOT15C-HT3 | GSOT15C-HT3-GS08 | 3000 | 15000 | | GSOT24C-HT3 | GSOT24C-HT3-GS08 | 3000 | 15000 | | GSOT36C-HT3 | GSOT36C-HT3-GS08 | 3000 | 15000 | ### **Package Data** | Device name | Package name | Marking code | Weight | Molding compound flammability rating | Moisture sensitivity level | Soldering conditions | |-------------|--------------|--------------|--------|--------------------------------------|-----------------------------------|--------------------------| | GSOT03C-HT3 | LLP75-3B | 03 | 5.1 mg | UL 94 V-0 | MSL level 1 (according J-STD-020) | 260 °C/10 s at terminals | | GSOT04C-HT3 | LLP75-3B | 04 | 5.1 mg | UL 94 V-0 | MSL level 1 (according J-STD-020) | 260 °C/10 s at terminals | | GSOT05C-HT3 | LLP75-3B | 05 | 5.1 mg | UL 94 V-0 | MSL level 1 (according J-STD-020) | 260 °C/10 s at terminals | | GSOT08C-HT3 | LLP75-3B | 08 | 5.1 mg | UL 94 V-0 | MSL level 1 (according J-STD-020) | 260 °C/10 s at terminals | | GSOT12C-HT3 | LLP75-3B | 12 | 5.1 mg | UL 94 V-0 | MSL level 1 (according J-STD-020) | 260 °C/10 s at terminals | | GSOT15C-HT3 | LLP75-3B | 15 | 5.1 mg | UL 94 V-0 | MSL level 1 (according J-STD-020) | 260 °C/10 s at terminals | | GSOT24C-HT3 | LLP75-3B | 24 | 5.1 mg | UL 94 V-0 | MSL level 1 (according J-STD-020) | 260 °C/10 s at terminals | | GSOT36C-HT3 | LLP75-3B | 36 | 5.1 mg | UL 94 V-0 | MSL level 1 (according J-STD-020) | 260 °C/10 s at terminals | Document Number 85825 Rev. 1.7, 21-Apr-08 # **Vishay Semiconductors** # **Absolute Maximum Ratings GSOT03C-HT3** | Rating | Test condition | Symbol | Value | Unit | |-----------------------|--|------------------|---------------|------| | Peak pulse current | Pin 1 to 3 or pin 2 to 3
Acc. IEC 61000-4-5, t_P = 8/20 μ s; single shot | I _{PPM} | 30 | А | | reak puise current | Pin 1 to 2 or pin 2 to 1; pin 3 not connected Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | | 30 | А | | Pook pulse power | Pin 1 to 3 or pin 2 to 3
Acc. IEC 61000-4-5, t_P = 8/20 μ s; single shot | P _{PP} | 369 | W | | Peak pulse power | Pin 1 to 2 or pin 2 to 1; pin 3 not connected Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | P _{PP} | 504 | W | | ESD immunity | Contact discharge acc. IEC 61000-4-2; 10 pulses | V _{ESD} | ± 30 | kV | | L3D illillidrilly | Air discharge acc. IEC 61000-4-2; 10 pulses | V _{ESD} | ± 30 | kV | | Operating temperature | Junction temperature | T_J | - 40 to + 125 | °C | | Storage temperature | | T _{STG} | - 55 to + 150 | °C | #### GSOT04C-HT3 | Rating | Test condition | Symbol | Value | Unit | |-----------------------|--|---------------------|---------------|------| | | Pin 1 to 3 or pin 2 to 3
Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | I _{PPM} | 30 | А | | Peak pulse current | Pin 1 to 2 or pin 2 to 1; pin 3 not connected Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | I _{PPM} 30 | | Α | | Pook pulso power | Pin 1 to 3 or pin 2 to 3
Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | P _{PP} | 30 | W | | Peak pulse power | Pin 1 to 2 or pin 2 to 1; pin 3 not connected Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | P _{PP} | | W | | ESD immunity | Contact discharge acc. IEC 61000-4-2; 10 pulses | V _{ESD} | ± 30 | kV | | L3D illillidility | Air discharge acc. IEC 61000-4-2; 10 pulses | V_{ESD} | ± 30 | kV | | Operating temperature | Junction temperature | T_J | - 40 to + 125 | °C | | Storage temperature | | T _{STG} | - 55 to + 150 | °C | #### GSOT05C-HT3 | Rating | Test condition | Symbol | Value | Unit | |-----------------------|--|------------------|------------------------|------| | Barbarda | Pin 1 to 3 or pin 2 to 3
Acc. IEC 61000-4-5, t_P = 8/20 μ s; single shot | I _{PPM} | 30 | Α | | Peak pulse current | Pin 1 to 2 or pin 2 to 1; pin 3 not connected Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | lan. | | А | | Deal rules rever | Pin 1 to 3 or pin 2 to 3
Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | P _{PP} | 480 | W | | Peak pulse power | Pin 1 to 2 or pin 2 to 1; pin 3 not connected Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | P _{PP} | 612 | W | | CCD immunity | Contact discharge acc. IEC 61000-4-2; 10 pulses | V _{ESD} | ± 30 | kV | | ESD immunity | Air discharge acc. IEC 61000-4-2; 10 pulses | V _{ESD} | 30
30
480
612 | kV | | Operating temperature | Junction temperature | T _J | - 40 to + 125 | °C | | Storage temperature | | T _{STG} | - 55 to + 150 | °C | # **Vishay Semiconductors** #### GSOT08C-HT3 | Rating | Test condition | Symbol | Value | Unit | |-----------------------|--|------------------|---------------|------| | Peak pulse current | Pin 1 to 3 or pin 2 to 3
Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | I _{PPM} | 18 | А | | reak puise current | Pin 1 to 2 or pin 2 to 1; pin 3 not connected Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | | | А | | Pook pulse power | Pin 1 to 3 or pin 2 to 3
Acc. IEC 61000-4-5, t_P = 8/20 μ s; single shot | P _{PP} | 345 | W | | Peak pulse power | Pin 1 to 2 or pin 2 to 1; pin 3 not connected Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | P _{PP} | 18 | W | | ESD immunity | Contact discharge acc. IEC 61000-4-2; 10 pulses | V _{ESD} | ± 30 | kV | | E3D IIIIIIIIIIIII | Air discharge acc. IEC 61000-4-2; 10 pulses | V _{ESD} | ± 30 | kV | | Operating temperature | Junction temperature | T _J | - 40 to + 125 | °C | | Storage temperature | | T _{STG} | - 55 to + 150 | °C | ### GSOT12C-HT3 | Rating | Test condition | Symbol | Value | Unit | |-----------------------|--|------------------|---------------|------| | Pook pulgo current | Pin 1 to 3 or pin 2 to 3
Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | I _{PPM} | 12 | А | | Peak pulse current | Pin 1 to 2 or pin 2 to 1; pin 3 not connected Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | | | А | | Dook nules never | Pin 1 to 3 or pin 2 to 3
Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | P _{PP} | 312 | W | | Peak pulse power | Pin 1 to 2 or pin 2 to 1; pin 3 not connected Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | P _{PP} | 12 | W | | ESD immunity | Contact discharge acc. IEC 61000-4-2; 10 pulses | V _{ESD} | ± 30 | kV | | E3D IIIIIIuliily | Air discharge acc. IEC 61000-4-2; 10 pulses | V _{ESD} | ± 30 | kV | | Operating temperature | Junction temperature | T _J | - 40 to + 125 | °C | | Storage temperature | | T _{STG} | - 55 to + 150 | °C | #### GSOT15C-HT3 | Rating | Test condition | Symbol | Value | Unit | |-----------------------|---|------------------|---------------|------| | Deals pulse august | Pin 1 to 3 or pin 2 to 3
Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | I _{PPM} | 8 | А | | Peak pulse current | Pin 1 to 2 or pin 2 to 1; pin 3 not connected Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | in land | | А | | Deals pulse payer | Pin 1 to 3 or pin 2 to 3
Acc. IEC 61000-4-5, t _P = 8/20 µs; single shot | P _{PP} | 230 | W | | Peak pulse power | Pin 1 to 2 or pin 2 to 1; pin 3 not connected Acc. IEC 61000-4-5, t _P = 8/20 µs; single shot | P _{PP} | 245 | W | | ESD immunity | Contact discharge acc. IEC 61000-4-2; 10 pulses | V _{ESD} | ± 30 | kV | | E3D IIIIIIIIIIIII | Air discharge acc. IEC 61000-4-2; 10 pulses | V _{ESD} | ± 30 | kV | | Operating temperature | Junction temperature | T _J | - 40 to + 125 | °C | | Storage temperature | | T _{STG} | - 55 to + 150 | °C | # Vishay Semiconductors ### **GSOT24C-HT3** | Rating | Test condition | Symbol | Value | Unit | |--|--|------------------|---------------|------| | Peak pulse current | Pin 1 to 3 or pin 2 to 3
Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | I _{PPM} | 5 | А | | Pin 1 to 2 or pin 2 to 1; pin 3 not connected Acc. IEC 61000-4-5, t _P = 8/20 µs; single shot | | I _{PPM} | 5 | А | | Pook pulse power | Pin 1 to 3 or pin 2 to 3
Acc. IEC 61000-4-5, t_P = 8/20 μ s; single shot | P _{PP} | 235 | W | | Peak pulse power | Pin 1 to 2 or pin 2 to 1; pin 3 not connected Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | P _{PP} | 5 | W | | ESD immunity | Contact discharge acc. IEC 61000-4-2; 10 pulses | V _{ESD} | ± 30 | kV | | L3D illillidility | Air discharge acc. IEC 61000-4-2; 10 pulses | V_{ESD} | ± 30 | kV | | Operating temperature | Junction temperature | T _J | - 40 to + 125 | °C | | Storage temperature | | T _{STG} | - 55 to + 150 | °C | ### **GSOT36C-HT3** | Rating | Test condition | Symbol | Value | Unit | |-----------------------|--|----------------------|---------------|------| | Deals pulse ourset | Pin 1 to 3 or pin 2 to 3
Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | I _{PPM} | 3.5 | Α | | Peak pulse current | Pin 1 to 2 or pin 2 to 1; pin 3 not connected Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | I _{PPM} 3.5 | | Α | | Dook pulse neurov | Pin 1 to 3 or pin 2 to 3
Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | P _{PP} | 3.5 | W | | Peak pulse power | Pin 1 to 2 or pin 2 to 1; pin 3 not connected Acc. IEC 61000-4-5, $t_P = 8/20 \mu s$; single shot | P _{PP} | | W | | CCD immunity | Contact discharge acc. IEC 61000-4-2; 10 pulses | V _{ESD} | ± 30 | kV | | ESD immunity | Air discharge acc. IEC 61000-4-2; 10 pulses | V _{ESD} | ± 30 | kV | | Operating temperature | Junction temperature | T _J | - 40 to + 125 | °C | | Storage temperature | | T _{STG} | - 55 to + 150 | °C | #### **Vishay Semiconductors** #### BiAs-Mode (2-line Bidirectional Asymmetrical protection mode) With the **GSOTxxC-HT3** two signal- or data-lines (L1, L2) can be protected against voltage transients. With pin 3 connected to ground and pin 1 and pin 2 connected to a signal- or data-line which has to be protected. As long as the voltage level on the data- or signal-line is between 0 V (ground level) and the specified **M**aximum **R**everse **W**orking **V**oltage (V_{RWM}) the protection diode between pin 2 and pin 3 and between pin 1 and pin 3 offer a high isolation to the ground line. The protection device behaves like an open switch. As soon as any positive transient voltage signal exceeds the break through voltage level of the protection diode, the diode becomes conductive and shorts the transient current to ground. Now the protection device behaves like a closed switch. The Clamping Voltage (V_C) is defined by the BReakthrough Voltage (V_{BR}) level plus the voltage drop at the series impedance (resistance and inductance) of the protection device. Any negative transient signal will be clamped accordingly. The negative transient current is flowing in the forward direction of the protection diode. The low Forward Voltage (V_F) clamps the negative transient close to the ground level. Due to the different clamping levels in forward and reverse direction the **GSOTxxC-HT3** clamping behaviour is **Bi**directional and **As**ymmetrical (**BiAs**). 20239 If a higher surge current or Peak Pulse current (I_{PP}) is needed, both protection diodes in the GSOTxxC-HT3 can also be used in parallel in order to "double" the performance. This offers: • double surge power = double peak pulse current (2 x I_{PPM}) - halve line inductance = reduced clamping voltage - halve line resistance = reduced clamping voltage - double Diode Capacitance (2 x C_D) - double Reverse leakage current (2 x I_R) 20240 # **Vishay Semiconductors** **Electrical Characteristics**Ratings at 25 °C, ambient temperature unless otherwise specified #### GSOT03C-HT3 BiAs mode (between pin 1 to 3 or pin 2 to 3) | Parameter | Test conditions/remarks | Symbol | Min. | Тур. | Max. | Unit | |----------------------------|----------------------------------------------|--------------------|------|------|------|-------| | Protection paths | Number of lines which can be protected | N _{lines} | | | 2 | lines | | Reverse stand off voltage | at I _R = 100 μA | V_{RWM} | 3.3 | | | V | | Reverse current | at V _R = 3.3 V | I _R | | | 100 | μΑ | | Reverse break down voltage | at I _R = 1 mA | V_{BR} | 4 | 4.6 | | V | | D | at I _{PP} = 1 A | V _C | | 5.7 | 7.5 | V | | Reverse clamping voltage | at I _{PP} = I _{PPM} = 30 A | V _C | | 10 | 12.3 | V | | Forward elemning voltage | at I _{PP} = 1 A | V _F | | 1 | 1.2 | V | | Forward clamping voltage | at I _{PP} = I _{PPM} = 30 A | V _F | | 4.5 | | V | | Ossasilanas | at $V_R = 0 V$; $f = 1 MHz$ | C _D | | 420 | 600 | pF | | Capacitance | at V _R = 1.6 V; f = 1 MHz | C _D | | 260 | | pF | #### GSOT04C-HT3 BiAs mode (between pin 1 to 3 or pin 2 to 3) | Parameter | Test conditions/remarks | Symbol | Min. | Тур. | Max. | Unit | |----------------------------|----------------------------------------------|--------------------|------|------|------|-------| | Protection paths | Number of lines which can be protected | N _{lines} | | | 2 | lines | | Reverse stand off voltage | at I _R = 20 μA | V_{RWM} | 4 | | | V | | Reverse current | at V _R = 4 V | I _R | | | 20 | μΑ | | Reverse break down voltage | at I _R = 1 mA | V_{BR} | 5 | 6.1 | | V | | Deverse elemning veltage | at I _{PP} = 1 A | V _C | | 7.5 | 9 | V | | Reverse clamping voltage | at I _{PP} = I _{PPM} = 30 A | V _C | | 11.2 | 14.3 | V | | Farmard alamaina valtaga | at I _{PP} = 1 A | V _F | | 1 | 1.2 | V | | Forward clamping voltage | at I _{PP} = I _{PPM} = 30 A | V _F | | 4.5 | | V | | Occasillance | at $V_R = 0 V$; $f = 1 MHz$ | C _D | | 310 | 450 | pF | | Capacitance | at V _R = 2 V; f = 1 MHz | C _D | | 200 | | pF | #### GSOT05C-HT3 BiAs mode (between pin 1 to 3 or pin 2 to 3) | Parameter | Test conditions/remarks | Symbol | Min. | Тур. | Max. | Unit | |----------------------------|----------------------------------------------|--------------------|------|------|------|-------| | Protection paths | Number of lines which can be protected | N _{lines} | | | 2 | lines | | Reverse stand off voltage | at I _R = 10 μA | V _{RWM} | 5 | | | V | | Reverse current | at V _R = 5 V | I _R | | | 10 | μΑ | | Reverse break down voltage | at I _R = 1 mA | V_{BR} | 6 | 6.8 | | V | | Payaraa alampina valtaga | at I _{PP} = 1 A | V _C | | 7 | 8.7 | V | | Reverse clamping voltage | at $I_{PP} = I_{PPM} = 30 \text{ A}$ | V _C | | 12 | 16 | V | | Forward alamping voltage | at I _{PP} = 1 A | V_{F} | | 1 | 1.2 | V | | Forward clamping voltage | at I _{PP} = I _{PPM} = 30 A | V_{F} | | 4.5 | | V | | Capacitance | at $V_R = 0 V$; $f = 1 MHz$ | C _D | | 260 | 350 | pF | | Сараснанов | at V _R = 2.5 V; f = 1 MHz | C _D | | 150 | | pF | # **Vishay Semiconductors** #### GSOT08C-HT3 BiAs mode (between pin 1 to 3 or pin 2 to 3) | Parameter | Test conditions/remarks | Symbol | Min. | Тур. | Max. | Unit | |----------------------------|----------------------------------------------|--------------------|------|------|------|-------| | Protection paths | Number of lines which can be protected | N _{lines} | | | 2 | lines | | Reverse stand off voltage | at I _R = 5 μA | V _{RWM} | 8 | | | V | | Reverse current | at V _R = 8 V | I _R | | | 5 | μΑ | | Reverse break down voltage | at I _R = 1 mA | V_{BR} | 9 | 10 | | V | | Payaraa alampina valtaga | at I _{PP} = 1 A | V _C | | 10.7 | 13 | V | | Reverse clamping voltage | at I _{PP} = I _{PPM} = 18 A | V _C | | 15.2 | 19.2 | V | | Forward alamping voltage | at I _{PP} = 1 A | V_{F} | | 1 | 1.2 | V | | Forward clamping voltage | at I _{PP} = I _{PPM} = 18 A | V _F | | 3 | | V | | Capacitance | at $V_R = 0 V$; $f = 1 MHz$ | C _D | | 160 | 250 | pF | | Оараспанов | at $V_R = 4 V$; $f = 1 MHz$ | C _D | | 80 | | pF | #### GSOT12C-HT3 #### BiAs mode (between pin 1 to 3 or pin 2 to 3) | Parameter | Test conditions/remarks | Symbol | Min. | Тур. | Max. | Unit | |----------------------------|----------------------------------------------|--------------------|------|------|------|-------| | Protection paths | Number of lines which can be protected | N _{lines} | | | 2 | lines | | Reverse stand off voltage | at I _R = 1 μA | V_{RWM} | 12 | | | V | | Reverse current | at V _R = 12 V | I _R | | | 1 | μΑ | | Reverse break down voltage | at I _R = 1 mA | V_{BR} | 13.5 | 15 | | V | | Payaraa alampina valtaga | at I _{PP} = 1 A | V _C | | 15.4 | 18.7 | V | | Reverse clamping voltage | at I _{PP} = I _{PPM} = 12 A | V _C | | 21.2 | 26 | V | | Forward alamping voltage | at I _{PP} = 1 A | V _F | | 1 | 1.2 | V | | Forward clamping voltage | at I _{PP} = I _{PPM} = 12 A | V _F | | 2.2 | | V | | Canacitanas | at $V_R = 0 V$; $f = 1 MHz$ | C _D | | 115 | 150 | pF | | Capacitance | at $V_R = 6 \text{ V}$; $f = 1 \text{ MHz}$ | C _D | | 50 | | pF | #### GSOT15C-HT3 #### BiAs mode (between pin 1 to 3 or pin 2 to 3) | Parameter | Test conditions/remarks | Symbol | Min. | Тур. | Max. | Unit | |----------------------------|------------------------------------------------|--------------------|------|------|------|-------| | Protection paths | Number of lines which can be protected | N _{lines} | | | 2 | lines | | Reverse stand off voltage | at I _R = 1 μA | V_{RWM} | 15 | | | V | | Reverse current | at V _R = 15 V | I _R | | | 1 | μΑ | | Reverse break down voltage | at I _R = 1 mA | V_{BR} | 16.5 | 18 | | V | | Reverse clamping voltage | at I _{PP} = 1 A | V_{C} | | 19.4 | 23.5 | V | | neverse ciamping voltage | at $I_{PP} = I_{PPM} = 8 A$ | V_{C} | | 24.8 | 28.8 | V | | Forward clamping voltage | at I _{PP} = 1 A | V_{F} | | 1 | 1.2 | V | | r orward clamping voltage | at $I_{PP} = I_{PPM} = 8 A$ | V_{F} | | 1.8 | | V | | Capacitance | at $V_R = 0 V$; $f = 1 MHz$ | C _D | | 90 | 120 | pF | | Сараснанов | at $V_R = 7.5 \text{ V}$; $f = 1 \text{ MHz}$ | C_D | | 35 | | pF | # **Vishay Semiconductors** #### GSOT24C-HT3 BiAs mode (between pin 1 to 3 or pin 2 to 3) | Parameter | Test conditions/remarks | Symbol | Min. | Тур. | Max. | Unit | |----------------------------|---------------------------------------------|--------------------|------|------|------|-------| | Protection paths | Number of lines which can be protected | N _{lines} | | | 2 | lines | | Reverse stand off voltage | at I _R = 1 μA | V _{RWM} | 24 | | | V | | Reverse current | at V _R = 24 V | I _R | | | 1 | μΑ | | Reverse break down voltage | at I _R = 1 mA | V_{BR} | 27 | 30 | | V | | Reverse clamping voltage | at I _{PP} = 1 A | V _C | | 34 | 41 | V | | neverse damping voltage | at I _{PP} = I _{PPM} = 5 A | V _C | | 41 | 47 | V | | Forward alamaing valtage | at I _{PP} = 1 A | V _F | | 1 | 1.2 | V | | Forward clamping voltage | at I _{PP} = I _{PPM} = 5 A | V _F | | 1.4 | | V | | Canacitanas | at V _R = 0 V; f = 1 MHz | C _D | | 65 | 80 | pF | | Capacitance | at V _R = 12 V; f = 1 MHz | C _D | | 20 | | pF | #### GSOT36C-HT3 #### BiAs mode (between pin 1 to 3 or pin 2 to 3) | Parameter | Test conditions/remarks | Symbol | Min. | Тур. | Max. | Unit | |----------------------------|----------------------------------------|--------------------|------|------|------|-------| | Protection paths | Number of lines which can be protected | N _{lines} | | | 2 | lines | | Reverse stand off voltage | at I _R = 1 μA | V_{RWM} | 36 | | | V | | Reverse current | at V _R = 36 V | I _R | | | 1 | μΑ | | Reverse break down voltage | at I _R = 1 mA | V_{BR} | 39 | 43 | | V | | Reverse clamping voltage | at I _{PP} = 1 A | V_{C} | | 49 | 60 | V | | neverse ciamping voltage | at $I_{PP} = I_{PPM} = 3.5 \text{ A}$ | V _C | | 59 | 71 | V | | Forward clamping voltage | at I _{PP} = 1 A | V_{F} | | 1 | 1.2 | V | | Torward clamping voltage | at $I_{PP} = I_{PPM} = 3.5 \text{ A}$ | V_{F} | | 1.3 | | V | | Capacitance | at $V_R = 0 V$; $f = 1 MHz$ | C _D | | 52 | 65 | pF | | Оараспансе | at V _R = 18 V; f = 1 MHz | C _D | | 12 | | pF | #### **Vishay Semiconductors** #### BiSy-mode (1-line Bidirectional Symmetrical protection mode) If a bipolar symmetrical protection device is needed the **GSOTxxC-HT3** can also be used as a single line protection device. Therefore pin 1 has to be connected to the signal- or data-line (L1) and pin 2 to ground (or vice versa). pin 3 must not be connected. Positive and negative voltage transients will be clamped in the same way. The clamping current through the ${\tt GSOTxxC-HS3}$ passes one diode in forward direction and the other one in reverse direction. The ${\tt Clamping}$ Voltage (${\tt V_C}$) is defined by the ${\tt BR}$ eakthrough ${\tt Voltage}$ (${\tt V_{BR}}$) level of one diode plus the forward voltage of the other diode plus the voltage drop at the series impedances (resistances and inductances) of the protection device. Due to the same clamping levels in positive and negative direction the **GSOTxxC-HT3** voltage clamping behaviour is **Bi**directional and **Sy**mmetrical (**BiSy**). #### **Electrical Characteristics** Ratings at 25 °C, ambient temperature unless otherwise specified #### GSOT03C-HT3 BiSy mode (between pin 1 to 2 or pin 2 to 1; pin 3 not connected) | Parameter | Test conditions/remarks | Symbol | Min. | Тур. | Max. | Unit | |----------------------------|------------------------------------------------|--------------------|------|------|------|-------| | Protection paths | Number of lines which can be protected | N _{lines} | | | 1 | lines | | Reverse stand off voltage | at I _R = 100 μA | V _{RWM} | 3.8 | | | V | | Reverse current | at V _R = 3.8 V | I _R | | | 100 | μΑ | | Reverse break down voltage | at I _R = 1 mA | V_{BR} | 4.5 | 5.3 | | V | | Clamping voltage | at I _{PP} = 1 A | V _C | | 7 | 8.4 | V | | Clamping voltage | at I _{PP} = I _{PPM} = 30 A | V _C | | 14 | 16.8 | V | | Canacitanas | at $V_R = 0 V$; $f = 1 MHz$ | C _D | | 210 | 300 | pF | | Capacitance | at $V_R = 1.6 \text{ V}$; $f = 1 \text{ MHz}$ | C_D | | 190 | | pF | #### GSOT04C-HT3 BiSy mode (between pin 1 to 2 or pin 2 to 1; pin 3 not connected) | Parameter | Test conditions/remarks | Symbol | Min. | Тур. | Max. | Unit | |----------------------------|----------------------------------------------|--------------------|------|------|------|-------| | Protection paths | Number of lines which can be protected | N _{lines} | | | 1 | lines | | Reverse stand off voltage | at I _R = 20 μA | V_{RWM} | 4.5 | | | V | | Reverse current | at V _R = 4.5 V | I _R | | | 20 | μΑ | | Reverse break down voltage | at I _R = 1 mA | V_{BR} | 5.5 | 6.8 | | V | | Clamping valtage | at I _{PP} = 1 A | V _C | | 7.5 | 9 | V | | Clamping voltage | at I _{PP} = I _{PPM} = 30 A | V _C | | 15.7 | 18.8 | V | | Consoitones | at $V_R = 0 V$; $f = 1 MHz$ | C_D | | 155 | 225 | pF | | Capacitance | at V _R = 2 V; f = 1 MHz | C_D | | 135 | | pF | ### **Vishay Semiconductors** #### GSOT05C-HT3 BiSy mode (between pin 1 to 2 or pin 2 to 1; pin 3 not connected) | Parameter | Test conditions/remarks | Symbol | Min. | Тур. | Max. | Unit | |----------------------------|----------------------------------------------|--------------------|------|------|------|-------| | Protection paths | Number of lines which can be protected | N _{lines} | | | 1 | lines | | Reverse stand off voltage | at I _R = 10 μA | V _{RWM} | 5.5 | | | V | | Reverse current | at V _R = 5.5 V | I _R | | | 10 | μΑ | | Reverse break down voltage | at I _R = 1 mA | V_{BR} | 6.5 | 7.5 | | V | | Clamping valtage | at I _{PP} = 1 A | V _C | | 8.1 | 9.7 | V | | Clamping voltage | at I _{PP} = I _{PPM} = 30 A | V _C | | 17 | 20.4 | V | | Capacitance | at $V_R = 0 V$; $f = 1 MHz$ | C _D | | 130 | 175 | pF | | Сараспансе | at V _R = 2.5 V; f = 1 MHz | C _D | | 100 | | pF | #### GSOT08C-HT3 BiSy mode (between pin 1 to 2 or pin 2 to 1; pin 3 not connected) | Parameter | Test conditions/remarks | Symbol | Min. | Тур. | Max. | Unit | |----------------------------|----------------------------------------------|--------------------|------|------|------|-------| | Protection paths | Number of lines which can be protected | N _{lines} | | | 1 | lines | | Reverse stand off voltage | at I _R = 5 μA | V _{RWM} | 8.5 | | | V | | Reverse current | at V _R = 8.5 V | I _R | | | 5 | μΑ | | Reverse break down voltage | at I _R = 1 mA | V_{BR} | 9.5 | 10.7 | | V | | Clamping voltage | at I _{PP} = 1 A | V _C | | 11.7 | 14 | V | | Clamping voltage | at I _{PP} = I _{PPM} = 18 A | V _C | | 18.5 | 22.2 | V | | Capacitance | at $V_R = 0 V$; $f = 1 MHz$ | C _D | | 80 | 125 | pF | | Сараснансе | at V _R = 4 V; f = 1 MHz | C _D | | 60 | | pF | #### GSOT12C-HT3 BiSy mode (between pin 1 to 2 or pin 2 to 1; pin 3 not connected) | Parameter | Test conditions/remarks | Symbol | Min. | Тур. | Max. | Unit | |----------------------------|----------------------------------------|--------------------|------|------|------|-------| | Protection paths | Number of lines which can be protected | N _{lines} | | | 1 | lines | | Reverse stand off voltage | at I _R = 1 μA | V_{RWM} | 12.5 | | | V | | Reverse current | at V _R = 12.5 V | I _R | | | 1 | μΑ | | Reverse break down voltage | at I _R = 1 mA | V_{BR} | 13.5 | 15.7 | | V | | Clamping voltage | at I _{PP} = 1 A | V _C | | 16.4 | 19.7 | V | | Ciamping voltage | at $I_{PP} = I_{PPM} = 12 A$ | V _C | | 23.4 | 28.1 | V | | Capacitance | at $V_R = 0 V$; $f = 1 MHz$ | C _D | | 58 | 75 | pF | | Оараспансе | at V _R = 6 V; f = 1 MHz | C_D | | 36 | | pF | #### GSOT15C-HT3 BiSy mode (between pin 1 to 2 or pin 2 to 1; pin 3 not connected) | Parameter | Test conditions/remarks | Symbol | Min. | Тур. | Max. | Unit | |----------------------------|---------------------------------------------|--------------------|------|------|------|-------| | Protection paths | Number of lines which can be protected | N _{lines} | | | 1 | lines | | Reverse stand off voltage | at I _R = 1 μA | V_{RWM} | 15.5 | | | V | | Reverse current | at V _R = 15.5 V | I _R | | | 1 | μΑ | | Reverse break down voltage | at I _R = 1 mA | V_{BR} | 17 | 18.7 | | V | | Clamping voltage | at I _{PP} = 1 A | V_{C} | | 20.4 | 24.5 | V | | Clamping voltage | at I _{PP} = I _{PPM} = 8 A | V _C | | 26.6 | 30.6 | V | | Consoitones | at $V_R = 0 V$; $f = 1 MHz$ | C _D | | 45 | 60 | pF | | Capacitance | at V _R = 7.5 V; f = 1 MHz | C _D | | 25 | | pF | ### **Vishay Semiconductors** #### GSOT24C-HT3 #### BiSy mode (between pin 1 to 2 or pin 2 to 1; pin 3 not connected) | Parameter | Test conditions/remarks | Symbol | Min. | Тур. | Max. | Unit | |----------------------------|---------------------------------------------|--------------------|------|------|------|-------| | Protection paths | Number of lines which can be protected | N _{lines} | | | 1 | lines | | Reverse stand off voltage | at I _R = 1 μA | V_{RWM} | 24.5 | | | V | | Reverse current | at V _R = 24.5 V | I _R | | | 1 | μΑ | | Reverse break down voltage | at I _R = 1 mA | V_{BR} | 27.5 | 30.7 | | V | | Clamping voltage | at I _{PP} = 1 A | V _C | | 34 | 41 | V | | | at I _{PP} = I _{PPM} = 5 A | V _C | | 40 | 48 | V | | Capacitance | at $V_R = 0 V$; $f = 1 MHz$ | C _D | | 33 | 40 | pF | | | at V _R = 12 V; f = 1 MHz | C _D | | 18 | | pF | #### **GSOT36C-HT3** #### BiSy mode (between pin 1 to 2 or pin 2 to 1; pin 3 not connected) | Parameter | Test conditions/remarks | Symbol | Min. | Тур. | Max. | Unit | |----------------------------|-----------------------------------------------|--------------------|------|------|------|-------| | Protection paths | Number of lines which can be protected | N _{lines} | | | 1 | lines | | Reverse stand off voltage | at I _R = 1 μA | V _{RWM} | 36.5 | | | V | | Reverse current | at V _R = 36.5 V | I _R | | | 1 | μΑ | | Reverse break down voltage | at I _R = 1 mA | V_{BR} | 39.5 | 43.7 | | V | | Clamping voltage | at I _{PP} = 1 A | V _C | | 50 | 60 | V | | | at I _{PP} = I _{PPM} = 3.5 A | V _C | | 60 | 72 | V | | Capacitance | at $V_R = 0 V$; $f = 1 MHz$ | C _D | | 26 | 33 | pF | | | at V _R = 18 V; f = 1 MHz | C _D | | 10 | | pF | #### Package Dimensions in millimeters (inches): LLP75-3B #### **Vishay Semiconductors** #### **Ozone Depleting Substances Policy Statement** It is the policy of Vishay Semiconductor GmbH to - 1. Meet all present and future national and international statutory requirements. - 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. - 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively. - 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA. - 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Vishay ### **Disclaimer** All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08