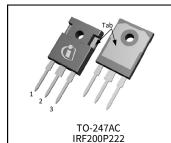
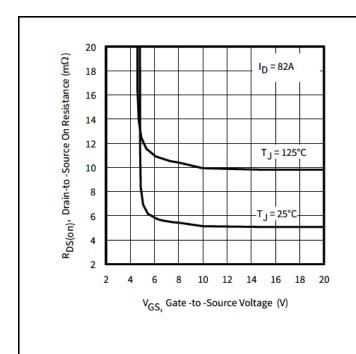

MOSFET


StrongIRFET™

Applications

- UPS and Inverter applications
- Half-bridge and full-bridge topologies
- Resonant mode power supplies
- DC/DC and AC/DC converters
- OR-ing and redundant power switches
- Brushed and BLDC Motor drive applications
- Battery powered circuits

V _{DSS}	200V
R _{DS(on) typ} .	5.3m Ω
max	6.6m Ω
I _D	182A


Benefits

- Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dv/dt and di/dt Capability
- Lead-Free; RoHS Compliant; Halogen-Free

Base part number	Package Type	Standard Pack	Orderable Part Number	
base part number	Package Type	Form	Quantity	Orderable Part Number
IRF200P222	TO-247AC	Tube	25	IRF200P222

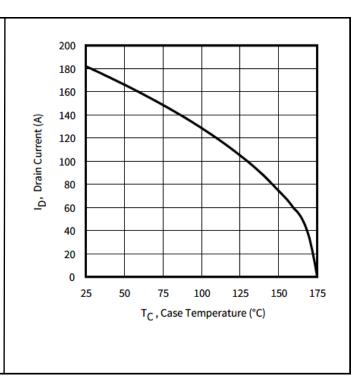


Figure 1 Typical On-Resistance vs. Gate Voltage

Figure 2 Maximum Drain Current vs. Case Temperature

StrongIRFET™

Table of Contents

IRF200P222

Table of Contents

Applicatio	ons	1
	Table	
•	Contents	
1	Parameters	
2		
3	Electrical characteristics	
4	Electrical characteristic diagrams	6
	Information	
Qualificat	ion Information	15
Revision	History	16

1 Parameters

Table1 Key performance parameters

Parameter	Values	Units
$\overline{V_{DS}}$	200	V
R _{DS(on) max}	6.6	mΩ
I_D	182	A

2 Maximum ratings and thermal characteristics

Table 2 Maximum ratings (at T_J=25°C, unless otherwise specified)

Parameter	Symbol	Conditions	Values	Unit
Continuous Drain Current	I _D	$T_C = 25^{\circ}C, V_{GS} @ 10V$	182	
Continuous Drain Current	I _D	$T_C = 100^{\circ}C, V_{GS} @ 10V$	129	Α
Pulsed Drain Current ①	I _{DM}	T _C = 25°C	728	
Maximum Power Dissipation	P _D	T _C = 25°C	556	W
Linear Derating Factor		T _C = 25°C	3.7	W/°C
Gate-to-Source Voltage	V_{GS}	-	± 20	V
Operating Junction and Storage Temperature Range	T _J T _{STG}	-	-55 to + 175	%C
Soldering Temperature, for 10 seconds (1.6mm from case)	-	-	300	°C
Mounting Torque, 6-32 or M3 Screw	-	-	10 lbf·in (1.1 N·m)	-

Table 3 Thermal characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Junction-to-Case ⑦	$R_{ heta JC}$	T」approximately 90°C	-	-	0.27	
Case-to-Sink, Flat Greased Surface	$R_{\theta CS}$	-	-	0.24	-	°C/W
Junction-to-Ambient	$R_{ heta JA}$	-	-	-	40	

Table 4 Avalanche characteristics

Parameter	Symbol	Values	Unit
Single Pulse Avalanche Energy ②	E _{AS} (Thermally limited)	810	
Single Pulse Avalanche Energy ®	E _{AS} (Thermally limited)	1070	mJ
Avalanche Current ①	I _{AR}		Α
Repetitive Avalanche Energy ①	E _{AR}	See Fig 16, 17, 23a, 23b	mJ

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Limited by T_{Jmax} , starting $T_J = 25$ °C, L = 0.24mH, $R_G = 50$ Ω , $I_{AS} = 82$ A, $V_{GS} = 10$ V.
- ③ $I_{SD} \le 82A$, $di/dt \le 2290A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 175$ °C.
- @ Pulse width \leq 400 μ s; duty cycle \leq 2%.
- © C_{oss} eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- © C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- \mathcal{D} R_{θ} is measured at T_{J} approximately 90°C.
- **8** Limited by T_{Jmax} , starting $T_J = 25$ °C, L = 1mH, $R_G = 50$ Ω , $I_{AS} = 46$ A, $V_{GS} = 10$ V.

3 Electrical characteristics

Table 5 Static characteristics

Parameter	Symbol Conditions		Values			Unit	
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Oill	
Drain-to-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V$, $I_D = 1mA$	200	-	-	V	
Breakdown Voltage Temp. Coefficient	$\Delta V_{(BR)DSS}/\Delta T_J$	Reference to 25°C, $I_D = 2mA$ ①	ı	0.1	ı	V/°C	
Static Drain-to-Source On-Resistance	R _{DS(on)}	$V_{GS} = 10V, I_D = 82A$	-	5.3	6.6	mΩ	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_{D} = 270 \mu A$	2.0	-	4.0	V	
		$V_{DS} = 160V, V_{GS} = 0V$	-	-	1.0		
Drain-to-Source Leakage Current	I _{DSS}	$V_{DS} = 160V, V_{GS} = 0V, T_{J} = 125^{\circ}C$	-	-	100	μΑ	
Gate-to-Source Forward Leakage	I _{GSS}	V _{GS} = 20V	-	-	100	nA	
Gate Resistance	R_{G}		1	1.3	ı	Ω	

Table 6 Dynamic characteristics

Davamatav	Cymphol	ol Conditions		Values		
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Forward Trans conductance	gfs	$V_{DS} = 50V, I_{D} = 82A$	142	-	-	S
Total Gate Charge	Q_{g}		-	135	203	
Gate-to-Source Charge	Q_{gs}	$I_D = 82A$ $V_{DS} = 100V$	-	49	-	nC
Gate-to-Drain Charge	Q_{gd}	$V_{DS} = 100V$ $V_{GS} = 10V$	-	26	-	IIC
Total Gate Charge Sync. (Qg– Qgd)	Q_{sync}]	-	109	-	
Turn-On Delay Time	t _{d(on)}	V _{DD} = 130V	-	25	-	
Rise Time	t _r	$I_{D} = 82A$	-	96	-	
Turn-Off Delay Time	t _{d(off)}	$R_G = 2.7\Omega$	-	77	-	ns
Fall Time	t _f	V _{GS} = 10V	-	97	-	
Input Capacitance	C _{iss}	$V_{GS} = 0V$	-	9820	-	
Output Capacitance	Coss	V _{DS} = 50V	-	1240	-	
Reverse Transfer Capacitance	C_{rss}	f = 1.0MHz, See Fig.7	-	6.5	-	pF
Effective Output Capacitance (Energy Related)	Coss eff.(ER)	V _{GS} = 0V, V _{DS} = 0V to 160V ⑥	-	1025	-	۲'
Output Capacitance (Time Related)	Coss eff.(TR)	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 160V $	-	1540	-	

Table 7 Reverse Diode

Parameter	Symbol Conditions		Values			Unit	
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Uiill	
Continuous Source Current (Body Diode)	Is	MOSFET symbol showing the	-	-	182	А	
Pulsed Source Current (Body Diode) ①	I _{SM}	integral reverse p-n junction diode.	1	-	728	A	
Diode Forward Voltage	V_{SD}	$T_J = 25^{\circ}C$, $I_S = 82A$, $V_{GS} = 0V$ 4	-	-	1.2	V	
Peak Diode Recovery dv/dt ③	dv/dt	$T_J = 175$ °C, $I_S = 82A, V_{DS} = 200V$	-	12.3	-	V/ns	
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C$ $V_{DD} = 170V$	-	125	1	ns	
Reverse Recovery Time	L _{rr}	$T_J = 125^{\circ}C$ $I_F = 82A$,	-	180	-	113	
Poverse Peseveni Charge	0	$T_J = 25^{\circ}C$ di/dt = 100A/ μ s 4	-	390	-	nC	
Reverse Recovery Charge	Q_{rr}	T _J = 125°C	-	820	-	110	
Reverse Recovery Current	I _{RRM}	T _J = 25°C	-	4.8	-	Α	

4 Electrical characteristic diagrams

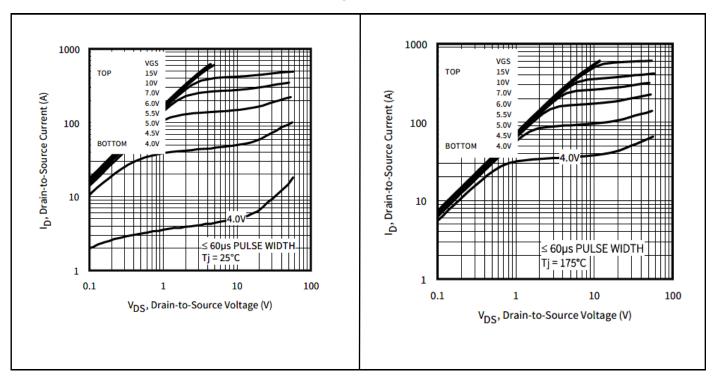


Figure 3 Typical Output Characteristics

Figure 4 Typical Output Characteristics

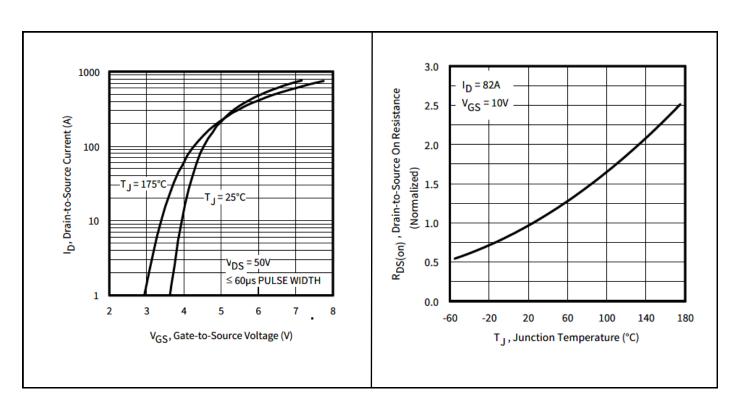


Figure 5 Typical Transfer Characteristics

Figure 6 Normalized On-Resistance vs. Temperature

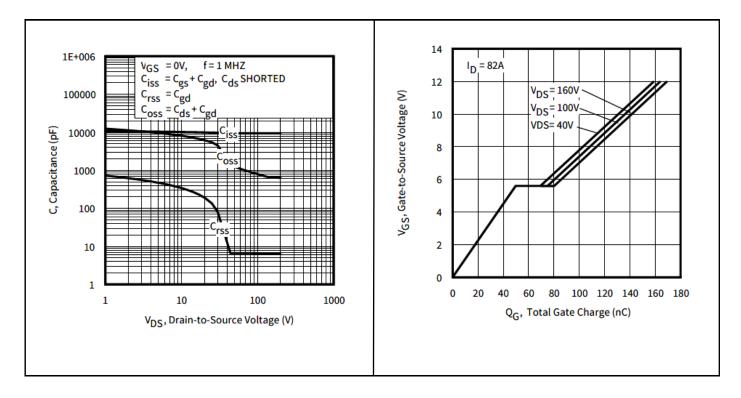


Figure 7 Typical Capacitance vs. Drain-to-Source Figure 8 Typical Gate Charge vs. Gate-to-Source Voltage

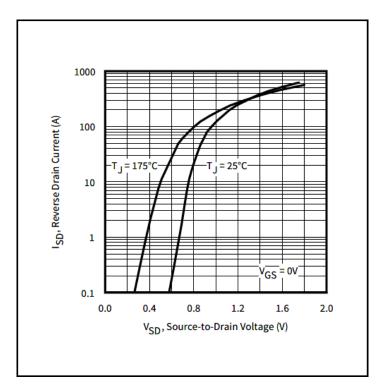


Figure 9 Typical Source-Drain Diode Forward

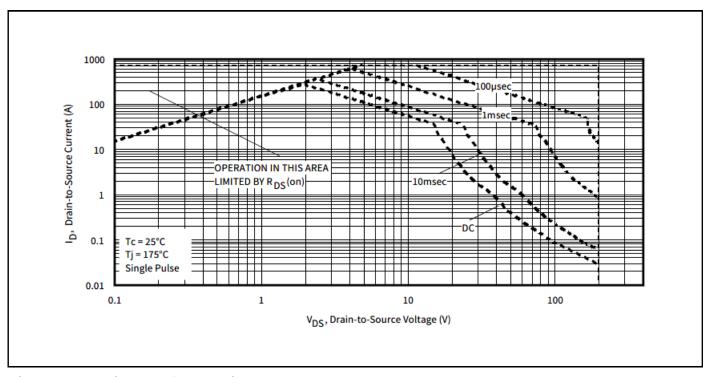


Figure 10 Maximum Safe Operating Area

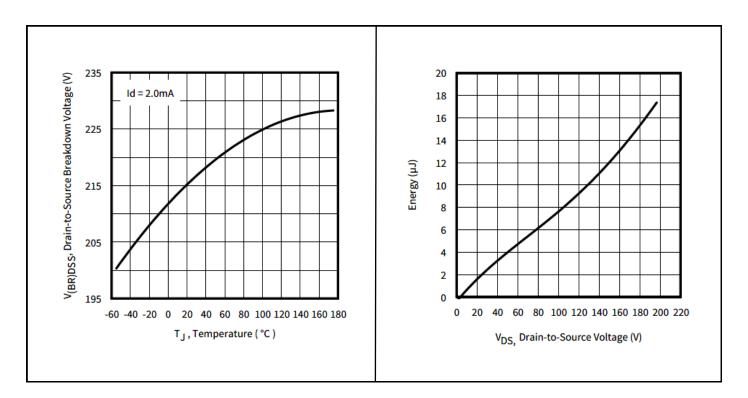


Figure 11 Drain-to-Source Breakdown Voltage

Figure 12 Typical Coss Stored Energy

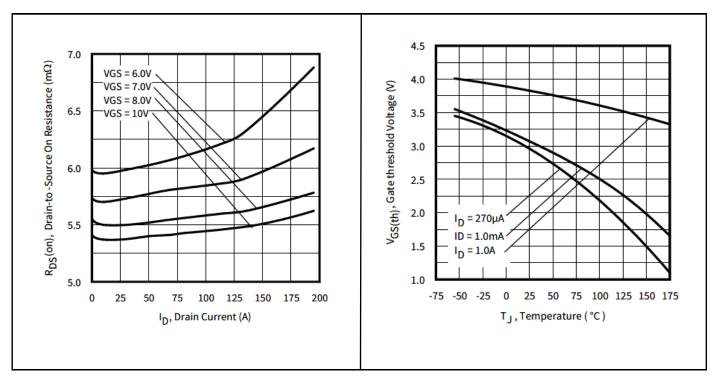


Figure 13 Typical On-Resistance vs. Drain Current

Figure 14 Threshold Voltage vs. Temperature

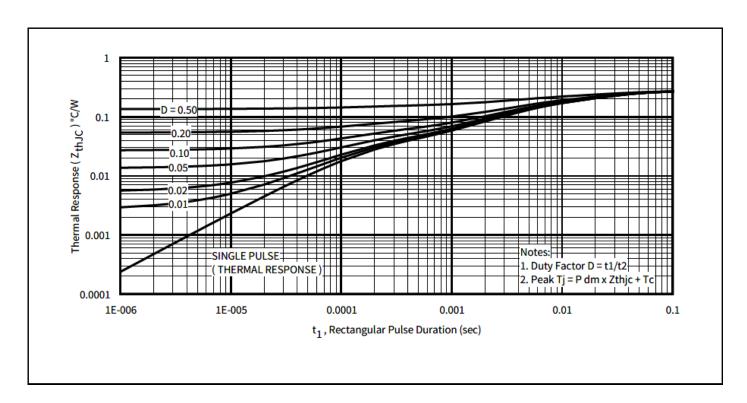


Figure 15 Maximum Effective Transient Thermal Impedance, Junction-to-Case

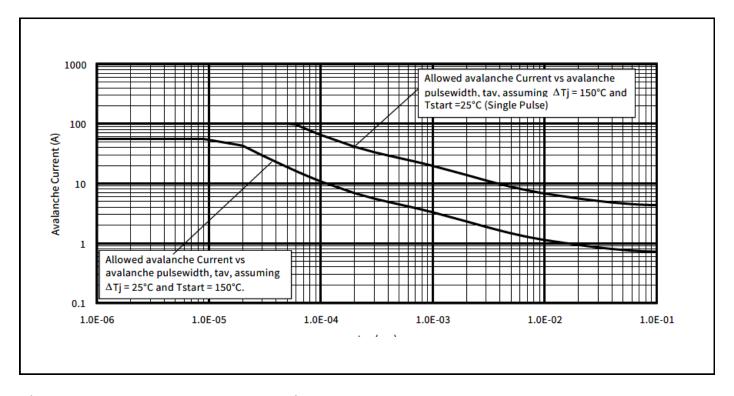


Figure 16 Avalanche Current vs. Pulse Width



Figure 17 Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 16, 17: (For further info, see AN-1005 at www.infineon.com)

1. Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.

- 2. Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. DT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).

 t_{av} = Average time in avalanche.

 $D = Duty cycle in avalanche = tav \cdot f$

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see Figures 14)

PD (ave) = 1/2 ($1.3 \cdot BV \cdot I_{av}$) = $\Delta T / Z_{thJC}$

 $I_{av} = 2\Delta T / \left[1.3 \cdot BV \cdot Z_{th}\right]$

 $E_{AS (AR)} = P_{D (ave)} \cdot t_{av}$

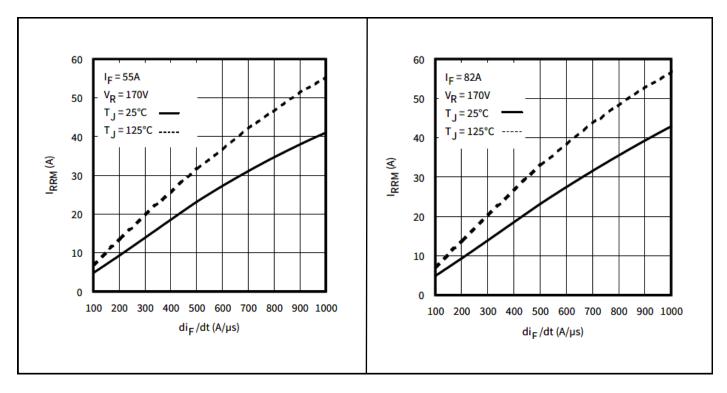


Figure 18 Typical Recovery Current vs. dif/dt

Figure 19 Typical Recovery Current vs. dif/dt

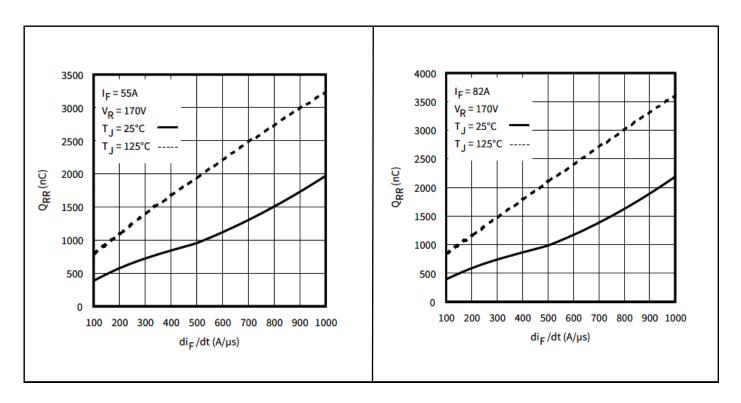


Figure 20 Typical Stored Charge vs. dif/dt

Figure 21 Typical Stored Charge vs. dif/dt

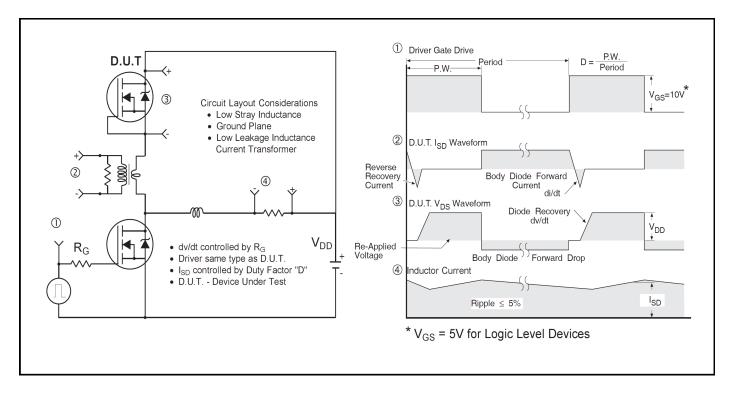


Figure 22 Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET™ Power MOSFETs

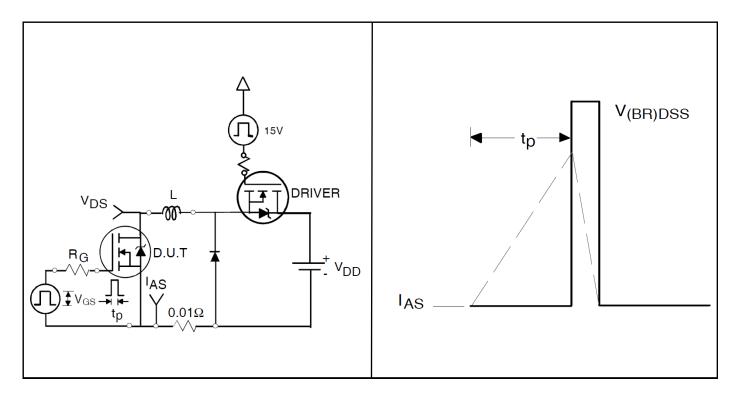


Figure 23a Unclamped Inductive Test Circuit

Figure 23b Unclamped Inductive Waveforms

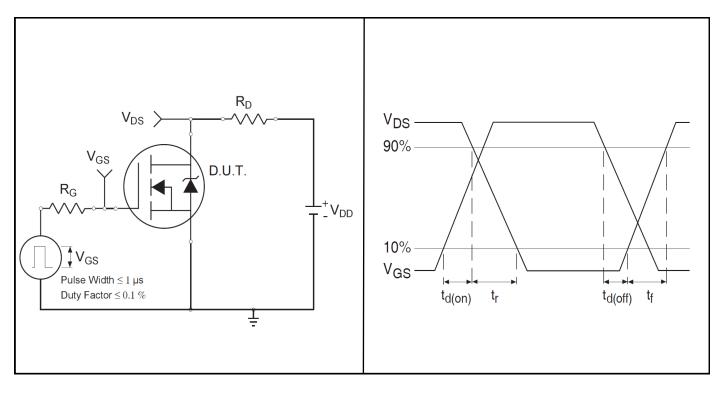
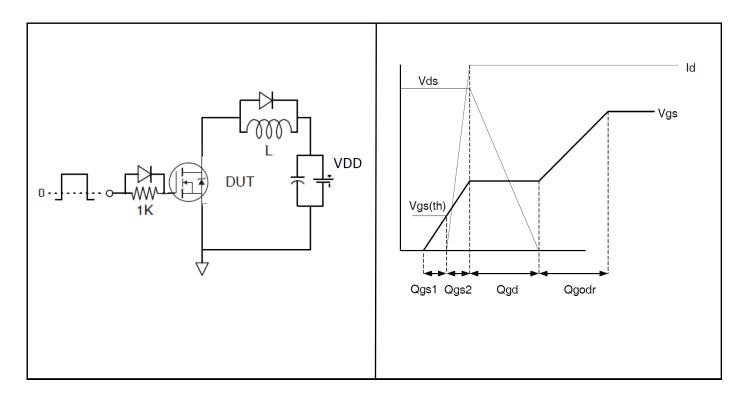
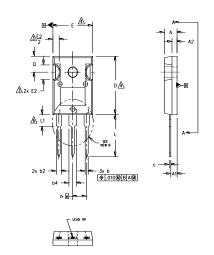
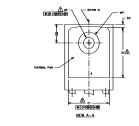


Figure 24a Switching Time Test Circuit

Figure 24b Switching Time Waveforms




Figure 25a Gate Charge Test Circuit


Figure 25b Gate Charge Waveform

5 Package Information

TO-247AC Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.

2. DIMENSIONS ARE SHOWN IN INCHES.

CONTOUR OF SLOT OPTIONAL.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127)
PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

5\ THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.

LEAD FINISH UNCONTROLLED IN L1.

, OP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 'TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.

8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC.

SYMBOL	INCHES		MILLIM	ETERS	
	MIN.	MAX.	MIN.	MAX.	NOTES
Α	.183	.209	4.65	5.31	
A1	.087	.102	2.21	2.59	
A2	.059	.098	1.50	2.49	
b	.039	.055	0.99	1.40	
ь1	.039	.053	0.99	1.35	
b2	.065	.094	1.65	2.39	
b3	.065	.092	1.65	2.34	
b4	.102	.135	2.59	3.43	
b5	.102	.133	2.59	3.38	
С	.015	.035	0.38	0.89	
c1	.015	.033	0.38	0.84	
D	.776	.815	19.71	20.70	4
D1	.515	-	13.08	-	5
D2	.020	.053	0.51	1.35	
Ε	.602	.625	15.29	15.87	4
E1	.530	-	13.46	-	
E2	.178	.216	4.52	5.49	
е	.215	BSC	5.46	BSC	
Øk	.0	10	0.	25	
L	.559	.634	14.20	16.10	
L1	.146	.169	3.71	4.29	
øР	.140	.144	3.56	3.66	
øP1	-	.291	-	7.39	
Q	.209	.224	5.31	5.69	
S	.217	BSC	5.51	BSC	
			1		oxdot

LEAD ASSIGNMENTS

<u>HEXFET</u>

1.- GATE 2.- DRAIN 3.- SOURCE

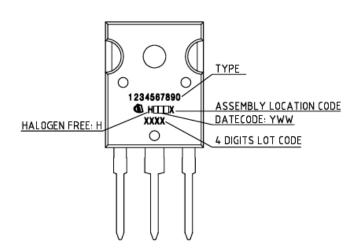
4.- DRAIN

IGBTs, CoPACK

1.- GATE

2.- COLLECTOR 3.- EMITTER

4.- COLLECTOR


<u>Diodes</u>

1.- ANODE/OPEN

2.- CATHODE

3.- ANODE

TO-247AC Part Marking Information

TO-247AC package is not recommended for Surface Mount Application.

Qualification Information 6

Qualification Information

Qualification Level	Industrial (per JEDEC JESD47F) [†]		
Moisture Sensitivity Level	TO-247AC	N/A	
RoHS Compliant	Yes		

15

V2.2

Applicable version of JEDEC standard at the time of product release.

StrongIRFET™

IRF200P222

Revision History

Major changes since the last revision

Page or Reference	Revision	Date	Description of changes
All pages	2.0	2017-03-10	First release data sheet.
All pages	2.1	2020-01-07	 Update from "IR MOSFT/StrongIRFET™" to "StrongIRFET™" -all pages Update Package picture -page1
Page 14	2.2	2024-11-25	Updated Part marking –page 14

StrongIRFET™

IRF200P222

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: **erratum@infineon.com**

Published by
Infineon Technologies AG
81726 München, Germany
© 2024 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

The Infineon Technologies component described in this Data Sheet may be used in life support devices or systems and or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.