
IRFP1405PbF

V _{(BR)DSS}	55V
R _{DS(on)} max.	5.3mΩ
I _D	95A

Features

- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free

Description

This HEXFET Power MOSFETs utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications.

Page part number	Bookaga Typa	Standard Pack Orderable Part		Orderable Part Number
Base part number	part number Package Type Form		Quantity	Orderable Part Number
IRFP1405PbF	TO-247AC	Tube	25	IRFP1405PbF

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	160	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	110	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	95	Α
I _{DM}	Pulsed Drain Current ①	640	
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	310	W
	Linear Derating Factor	2.0	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS (Thermally limited)} Single Pulse Avalanche Energy ②		530	mJ
E _{AS (Tested)}	Single Pulse Avalanche Energy ®	1060	
I _{AR}	Avalanche Current ①	Con Fig 12a 12b 15 16	Α
E _{AR}	Repetitive Avalanche Energy ©	See Fig.12a, 12b, 15, 16	mJ
T _J	Operating Junction and	-55 to + 175	
T _{STG} Storage Temperature Range			°C
_	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case *		0.49	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient *		40	

^{*} R₀ is measured at TJ approximately 90°C

IRFP1405NPbF

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.058		V/°C	Reference to 25° C, I_{D} = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		4.2	5.3	mΩ	V _{GS} = 10V, I _D = 95A ③
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Trans conductance	77			S	$V_{DS} = 25V, I_{D} = 95A$
1	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 55V$, $V_{GS} = 0V$
IDSS	Diali-to-Source Leakage Current			250	μΛ	$V_{DS} = 55V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
1	Gate-to-Source Forward Leakage			200	nΛ	$V_{GS} = 20V$
IGSS	Gate-to-Source Reverse Leakage			-200	nA	$V_{GS} = -20V$

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

•	•		•	•	
Q_g	Total Gate Charge	 120	180		I _D = 95A
Q_{gs}	Gate-to-Source Charge	 30		nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain Charge	 53			V _{GS} = 10V ③
$t_{d(on)}$	Turn-On Delay Time	 12			$V_{DD} = 28V$
t _r	Rise Time	 160		no	I _D = 95A
$t_{d(off)}$	Turn-Off Delay Time	 140		ns	$R_G = 2.6\Omega$
t _f	Fall Time	 150			V _{GS} = 10V ③
L_D	Internal Drain Inductance	 5.0		nH	Between lead, 6mm (0.25in.)
Ls	Internal Source Inductance	 13		11171	from package and center of die contact
C_{iss}	Input Capacitance	 5600			$V_{GS} = 0V$
C_{oss}	Output Capacitance	 1310		рF	$V_{DS} = 25V$
C_{rss}	Reverse Transfer Capacitance	 350			f = 1.0MHz
Coss	Output Capacitance	 6550			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance	 920			$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance	 1750			V _{GS} = 0V, V _{DS} = 0V to 44V ④
D: : O:	4 1 41				·

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
	Continuous Source Current			95		MOSFET symbol
Is	(Body Diode)			95	^	showing the
	Pulsed Source Current			640	Α	integral reverse
I _{SM}	(Body Diode) ①			640		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	٧	$T_J = 25^{\circ}C, I_S = 95A, V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		70	110	ns	$T_J = 25^{\circ}C$, $I_F = 95A$, $V_{DD} = 28V$
Q_{rr}	Reverse Recovery Charge		170	260	μC	di/dt = 100A/µs ③

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_J = 25^{\circ}C$, L = 0.12mH, $R_G = 25\Omega$, $I_{AS} = 95A$, VGS = 10V. Part not recommended for use above this value.
- \oplus $C_{oss\ eff.}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- © Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- © This value determined from sample failure population. 100% tested to this value in production.

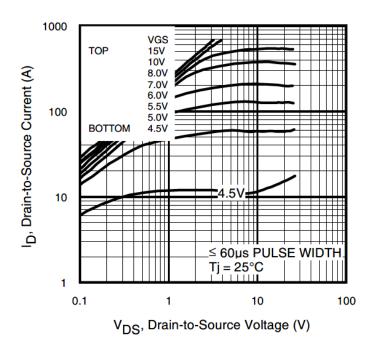


Fig. 1 Typical Output Characteristics

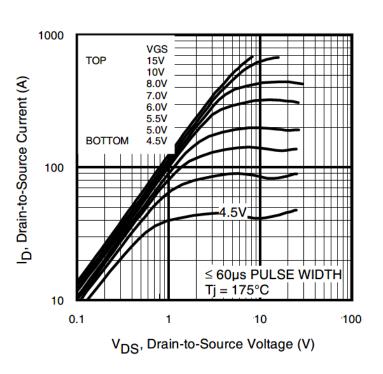


Fig. 2 Typical Output Characteristics

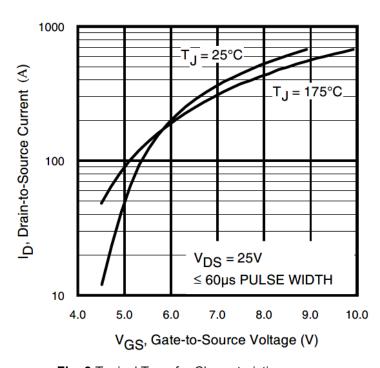
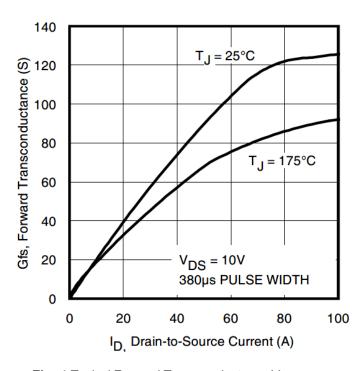
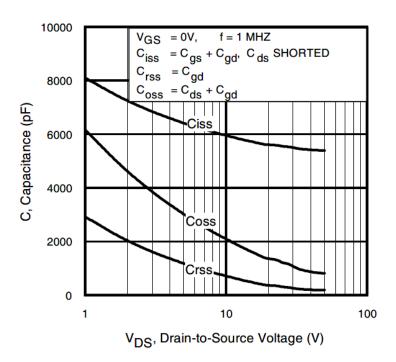




Fig. 3 Typical Transfer Characteristics

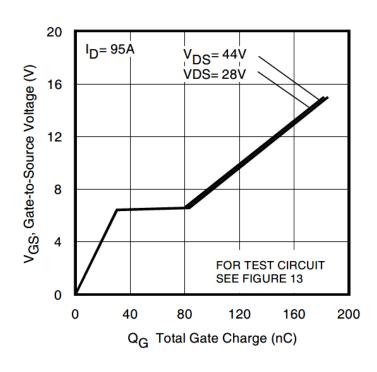


Fig. 4 Typical Forward Transconductance Vs. Drain Current

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

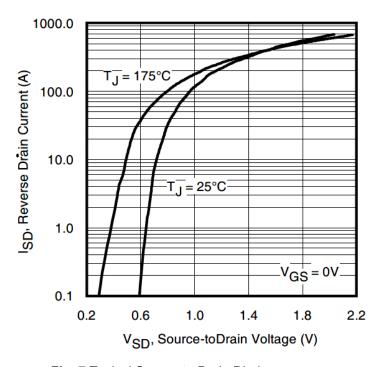


Fig. 7 Typical Source-to-Drain Diode Forward Voltage

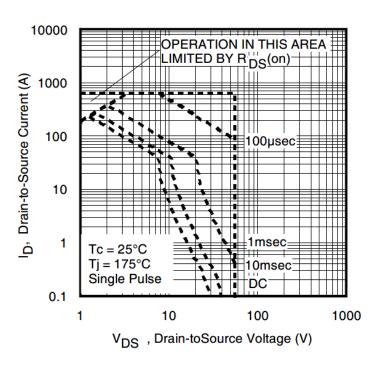
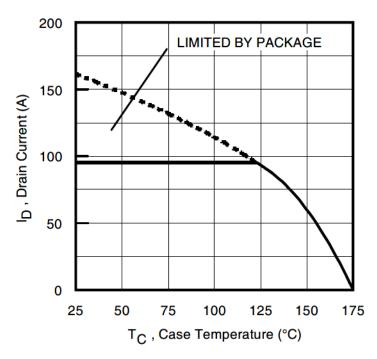
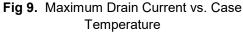
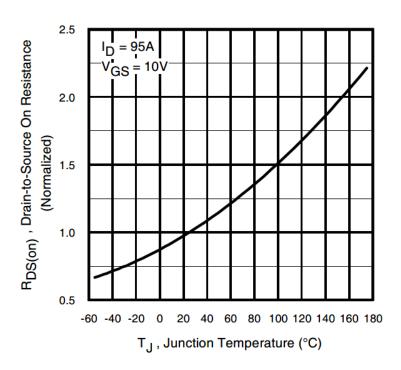





Fig 8. Maximum Safe Operating Area

Fig 10. Normalized On-Resistance vs. Temperature

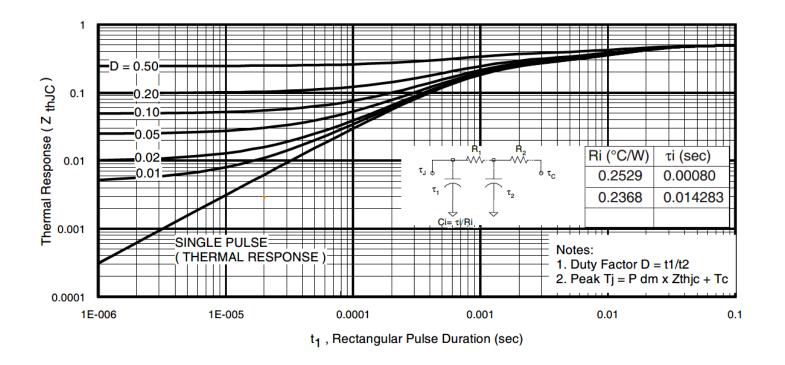


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

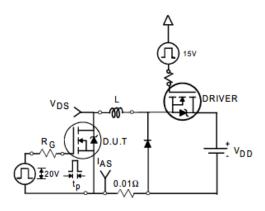


Fig. 12a. Unclamped Inductive Test Circuit

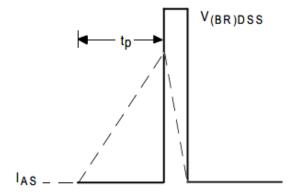


Fig. 12b. Unclamped Inductive Waveforms

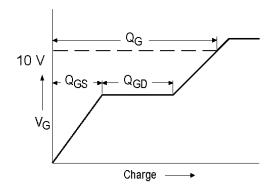


Fig 13a. Basic Gate Charge Waveform

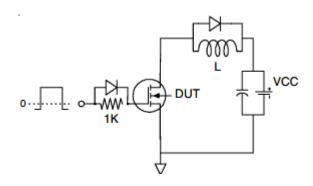
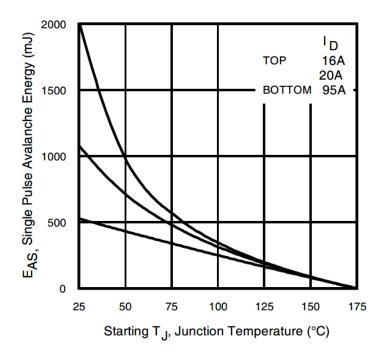



Fig 13b. Gate Charge Test Circuit

Fig 12c. Maximum Avalanche Energy vs. Drain Current

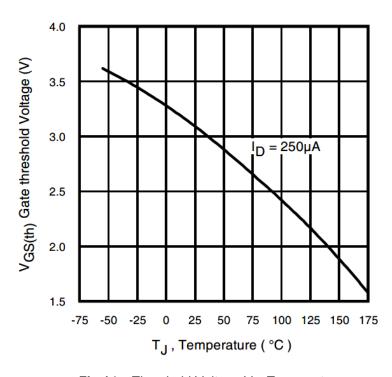


Fig 14. Threshold Voltage Vs. Temperature

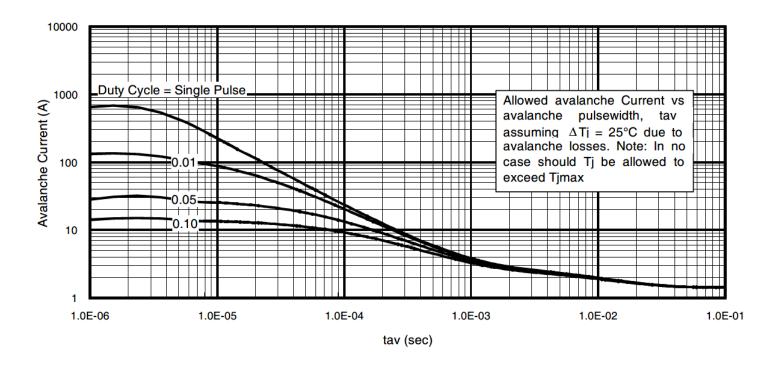


Fig. 15. Typical Avalanche Current Vs. Pulsewidth

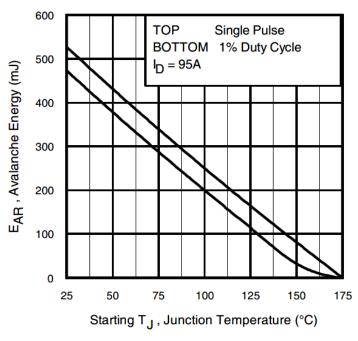


Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

1.Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.

- 2. Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded.
- Equation below based on circuit and waveforms shown in Figures 12a,
 12b
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).

t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see Figures 11)

$$\begin{split} P_{D \; (ave)} &= 1/2 \; (\; 1.3 \cdot BV \cdot I_{av}) = \Delta T/\; Z_{thJC} \\ I_{av} &= 2\Delta T/\; [1.3 \cdot BV \cdot Z_{th}] \\ E_{AS \; (AR)} &= P_{D \; (ave)} \cdot t_{av} \end{split}$$

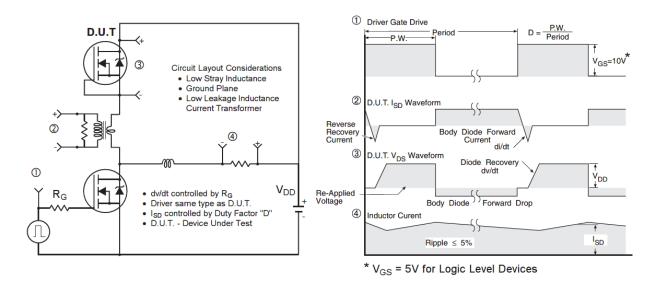


Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

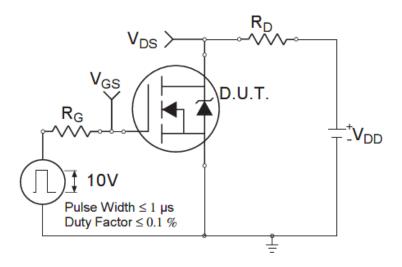


Fig 18a. Switching Time Test Circuit

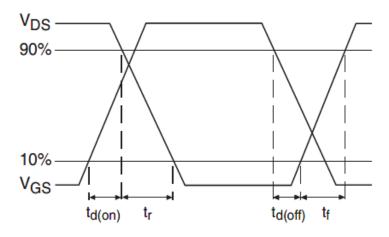
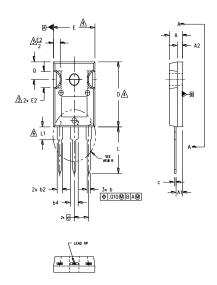
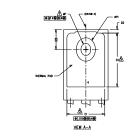




Fig 18b. Switching Time Waveforms

(infineon

TO-247AC Package Outline (Dimensions are

NOTES:

DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.

DIMENSIONS ARE SHOWN IN INCHES.

CONTOUR OF SLOT OPTIONAL.

4.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.

LEAD FINISH UNCONTROLLED IN L1.

ØP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 'TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.

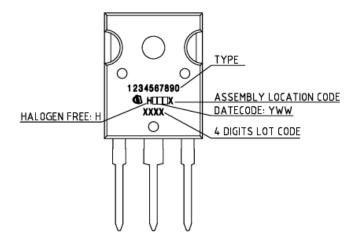
OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC.

	DIMENSIONS				
SYMBOL	INC	HES	MILLIM	ETERS]
	MIN.	MAX.	MIN.	MAX.	NOTES
A	.183	.209	4.65	5.31	
A1	.087	.102	2.21	2.59	
A2	.059	.098	1.50	2.49	
b	.039	.055	0.99	1.40	
ь1	.039	.053	0.99	1.35	
b2	.065	.094	1.65	2.39	
b3	.065	.092	1.65	2.34	
b4	.102	.135	2.59	3.43	
b5	.102	.133	2.59	3.38	
С	.015	.035	0.38	0.89	
c1	.015	.033	0.38	0.84	
D	.776	.815	19.71	20.70	4
D1	.515	-	13.08	-	5
D2	.020	.053	0.51	1.35	
E	.602	.625	15.29	15.87	4
E1	.530	-	13.46	-	
E2	.178	.216	4.52	5.49	
e	.215	BSC	5.46	BSC	
Øk	.0	10	0.	25	
L	.559	.634	14.20	16.10	
L1	.146	.169	3.71	4.29	
ØΡ	.140	.144	3.56	3.66	
øP1	-	.291	-	7.39	
Q	.209	.224	5.31	5.69	
S	.217	BSC	5.51	BSC	

LEAD ASSIGNMENTS

<u>HEXFET</u>

- 1.- GATE
- 2.- DRAIN 3.- SOURCE
- 4.- DRAIN


IGBTs, CoPACK

- 1.- GATE
- 2.- COLLECTOR 3.- EMITTER
- 4.- COLLECTOR

DIODES

- 1.- ANODE/OPEN
- 2.- CATHODE
- 3.- ANODE

TO-247AC Part Marking Information

TO-247AC package is not recommended for Surface Mount Application.

Revision History

Date	Rev.	Comments
2024-10-09	2.1	 Update datasheet to Infineon format Updated Part marking –page 9
		Added disclaimer on last page.

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2024 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics

("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

The Infineon Technologies component described in this Data Sheet may be used in life support devices or systems and or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.