Very Low Supply Current 3-Pin Microprocessor Reset Monitors # MAX809 Series, **MAX810 Series** The MAX809 and MAX810 are cost-effective system supervisor circuits designed to monitor V_{CC} in digital systems and provide a reset signal to the host processor when necessary. No external components are required. The reset output is driven active within 10 usec of V_{CC} falling through the reset voltage threshold. Reset is maintained active for a timeout period which is trimmed by the factory after V_{CC} rises above the reset threshold. The MAX810 has an active-high RESET output while the MAX809 has an active-low RESET output. Both devices are available in SOT-23 and SC-70 packages. The MAX809/810 are optimized to reject fast transient glitches on the V_{CC} line. Low supply current of 0.5 μ A (V_{CC} = 3.2 V) makes these devices suitable for battery powered applications. #### **Features** - Precision V_{CC} Monitor for 1.5 V, 2.5 V, 3.0 V, 3.3 V, and 5.0 V Supplies - Precision Monitoring Voltages from 1.2 V to 4.9 V Available in 100 mV Steps - Four Guaranteed Minimum Power-On Reset Pulse Width Available (1 ms, 20 ms, 100 ms, and 140 ms) - RESET Output Guaranteed to $V_{CC} = 1.0 \text{ V}$. - Low Supply Current - Compatible with Hot Plug Applications - V_{CC} Transient Immunity - No External Components - Wide Operating Temperature: -40°C to 105°C - These Devices are Pb-Free and are RoHS Compliant ### **Typical Applications** - Computers - Embedded Systems - Battery Powered Equipment - Critical Microprocessor Power Supply Monitoring Figure 1. Typical Application Diagram #### **MARKING DIAGRAMS** SOT-23 (TO - 236)**CASE 318** SC-70 (SOT-323) **CASE 419** = Specific Device Code XXX = Date Code = Pb-Free Package (Note: Microdot may be in either location) #### PIN CONFIGURATION NOTE: RESET is for MAX809 RESET is for MAX810 #### ORDERING INFORMATION See detailed ordering and shipping information on page 10 of this data sheet. NOTE: Some of the devices on this data sheet have been DISCONTINUED. Please refer to the table on page 10. #### **DEVICE MARKING INFORMATION** See general marking information in the device marking section on page 10 of this data sheet. This document contains information on some products that are still under development, onsemi reserves the right to change or discontinue these products without notice. 1 Figure 2. MAX809 Series Complementary Active-Low Output Figure 3. MAX810 Series Complementary Active-High Output #### **PIN DESCRIPTION** | Pin No. | Symbol | Description | |---------|-----------------|--| | 1 | GND | Ground | | 2 | RESET (MAX809) | RESET output remains low while V_{CC} is below the reset voltage threshold, and for a reset timeout period after V_{CC} rises above reset threshold | | 2 | RESET (MAX810) | RESET output remains high while V_{CC} is below the reset voltage threshold, and for a reset timeout period after V_{CC} rises above reset threshold | | 3 | V _{CC} | Supply Voltage (Typ) | ### **ABSOLUTE MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|----------------------|---------------------------------|--------| | Power Supply Voltage (V _{CC} to GND) | V _{CC} | -0.3 to 6.0 | V | | RESET Output Voltage (CMOS) | | -0.3 to (V _{CC} + 0.3) | V | | Input Current, V _{CC} | | 20 | mA | | Output Current, RESET | | 20 | mA | | dV/dt (V _{CC}) | | 100 | V/µsec | | Thermal Resistance, Junction-to-Air (Note 1) SOT-23 SC-70 | $R_{ heta JA}$ | 301
314 | °C/W | | Operating Junction Temperature Range | TJ | -40 to +125 | °C | | Storage Temperature Range | T _{stg} | -65 to +150 | °C | | Lead Temperature (Soldering, 10 Seconds) | T _{sol} | +260 | °C | | ESD Protection Human Body Model (HBM): Following Specification JESD22-A114 Machine Model (MM): Following Specification JESD22-A115 | | 2000
200 | V | | Latchup Current Maximum Rating: Following Specification JESD78 Class II Positive Negative | I _{Latchup} | 200
200 | mA | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. This based on a 35x35x1.6mm FR4 PCB with 10mm² of 1 oz copper traces under natural convention conditions and a single component $$P_{D} = \frac{T_{J}(max) - T_{A}}{R_{\theta JA}} \qquad \text{with } T_{J}(max) = 150^{\circ}C$$ characterization. 2. The maximum package power dissipation limit must not be exceeded. **ELECTRICAL CHARACTERISTICS** $T_A = -40^{\circ}C$ to $+105^{\circ}C$ unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$. (Note 3) | Characteristic | Symbol | Min | Тур | Max | Unit | |--|----------------------------|--------------|----------|--------------|------| | V_{CC} Range $T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}$ $T_A = -40^{\circ}\text{C to } +105^{\circ}\text{C (Note 4)}$ | | 1.0
1.2 | -
- | 5.5
5.5 | V | | Supply Current | Icc | | | | μА | | $V_{CC} = 3.3 \text{ V}$
$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ | icc | - | 0.5 | 1.2
2.0 | μΑ | | $T_A = 85^{\circ}\text{C to } +105^{\circ}\text{C (Note 5)}$
$V_{CC} = 5.5 \text{ V}$ | | _ | 0.8 | 1.8 | | | $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
$T_A = 85^{\circ}\text{C to } +105^{\circ}\text{C (Note 5)}$ | | - | _ | 2.5 | | | Reset Threshold (V _{in} Decreasing) (Note 6) | V _{TH} | | | | V | | MAX809SN490 | | | | | 1 | | $T_A = +25^{\circ}C$
$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ | | 4.83
4.78 | 4.9 | 4.97
5.02 | | | $T_A = -40 \text{ C to } +63 \text{ C}$
$T_A = +85 ^{\circ}\text{C to } +105 ^{\circ}\text{C (Note 5)}$ | | 4.76 | _ | 5.14 | | | MAX8xxLTR, MAX8xxSQ463 | | | | | 1 | | $T_A = +25^{\circ}C$ | | 4.56 | 4.63 | 4.70 | | | $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
$T_A = +85^{\circ}\text{C to } +105^{\circ}\text{C (Note 5)}$ | | 4.50
4.40 | _ | 4.75
4.86 | | | MAX809HTR | | | | | 1 | | $T_A = +25^{\circ}C$ | | 4.48 | 4.55 | 4.62 | | | $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ | | 4.43 | | 4.67 | | | $T_A = +85^{\circ}C \text{ to } +105^{\circ}C \text{ (Note 5)}$ | | 4.32 | | 4.78 | 4 | | MAX8xxMTR, MAX8xxSQ438 $T_{\Delta} = +25^{\circ}C$ | | 4.31 | 4.38 | 4.45 | | | $T_A = -423 \text{ C}$
$T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$ | | 4.27 | 4.50 | 4.49 | | | $T_A = +85^{\circ}C \text{ to } +105^{\circ}C \text{ (Note 5)}$ | | 4.16 | | 4.60 | | | MAX809JTR, MAX8xxSQ400 | | | | | 1 | | $T_A = +25^{\circ}C$
$T_A = -40^{\circ}C$ to +85°C | | 3.94 | 4.00 | 4.06 | | | $T_A = -40 \text{ C to } +85 \text{ C}$
$T_A = +85^{\circ}\text{C to } +105^{\circ}\text{C (Note 5)}$ | | 3.90
3.80 | _ | 4.10
4.20 | | | MAX8xxTTR, MAX809SQ308 | | | | | 1 | | $T_A = +25^{\circ}C$ | | 3.04 | 3.08 | 3.11 | | | $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
$T_A = +85^{\circ}\text{C to } +105^{\circ}\text{C (Note 5)}$ | | 3.00
2.92 | _ | 3.16
3.24 | | | | | 2.32 | _ | 5.24 | 4 | | MAX8xxSTR, MAX8xxSQ293 $T_A = +25^{\circ}C$ | | 2.89 | 2.93 | 2.96 | | | $T_A = -40^{\circ}C$ to $+85^{\circ}C$ | | 2.85 | - | 3.00 | | | $T_A = +85^{\circ}C \text{ to } +105^{\circ}C \text{ (Note 5)}$ | | 2.78 | - | 3.08 | 1 | | MAX8xxRTR, MAX8xxSQ263 | | 0.50 | 0.00 | 0.00 | | | $T_A = +25^{\circ}C$
$T_A = -40^{\circ}C$ to $+85^{\circ}C$ | | 2.59
2.56 | 2.63 | 2.66
2.70 | | | $T_A = +85^{\circ}\text{C to } +105^{\circ}\text{C (Note 5)}$ | | 2.49 | _ | 2.77 | | | MAX809SN232, MAX809SQ232 | | | | | 1 | | $T_A = +25^{\circ}C$ | | 2.28 | 2.32 | 2.35 | | | $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
$T_A = +85^{\circ}\text{C to } +105^{\circ}\text{C (Note 5)}$ | | 2.25
2.21 | _ | 2.38
2.45 | | | | | ۷.۷۱ | | 2.40 | 4 | | MAX809SN160 $T_A = +25^{\circ}C$ | | 1.58 | 1.60 | 1.62 | | | $T_A = +23 \text{ C}$
$T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$ | | 1.56 | - | 1.64 | | | $T_A^C = +85^{\circ}C \text{ to } +105^{\circ}C \text{ (Note 5)}$ | | 1.52 | _ | 1.68 | | | MAX809SN120, MAX8xxSQ120 | | | | | 1 | | $T_A = +25^{\circ}C$ | | 1.18 | 1.20 | 1.22 | | | $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
$T_A = +85^{\circ}\text{C to } +105^{\circ}\text{C (Note 5)}$ | | 1.17
1.14 | | 1.23
1.26 | | | | racteristics for the liste | | <u> </u> | | 1 | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. - Production testing done at T_A = 25°C, over temperature limits guaranteed by design. For NCV automotive devices, this temperature range is T_A = -40°C to +125°C. For NCV automotive devices, this temperature range is T_A = +85°C to +125°C. Contact your **onsemi** sales representative for other threshold voltage options. **ELECTRICAL CHARACTERISTICS (continued)** $T_A = -40^{\circ}C$ to $+105^{\circ}C$ unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$. (Note 7) | Characteristic | Symbol | Min | Тур | Max | Unit | |---|-----------------|-------------------------|------------------|-------------------------|--------| | Detector Voltage Threshold Temperature Coefficient | | - | 30 | - | ppm/°C | | V _{CC} to Reset Delay V _{CC} = V _{TH} to (V _{TH} - 100 mV) | | - | 10 | - | μsec | | Reset Active TimeOut Period (Note 8) MAX8xxSN(Q)293D1 MAX8xxSN(Q)293D2 MAX8xxSN(Q)293D3 MAX8xxSN(Q)293 | t _{RP} | 1.0
20
100
140 | -
-
-
- | 3.3
66
330
460 | msec | | | V _{OL} | - | - | 0.3 | > | | RESET Output Voltage High (No Load) (MAX809) $V_{CC} = V_{TH} + 0.2 \text{ V}$ $1.6 \text{ V} \leq V_{TH} \leq 2.4 \text{ V, I}_{SOURCE} = 200 \text{ μA}$ $2.5 \text{ V} \leq V_{TH} \leq 4.9 \text{ V, I}_{SOURCE} = 500 \text{ μA}$ | V _{OH} | 0.8 V _{CC} | - | - | V | | RESET Output Voltage High (No Load) (MAX810) $V_{CC} = V_{TH} - 0.2 \text{ V}$ $1.6 \text{ V} \leq V_{TH} \leq 2.4 \text{ V, } I_{SOURCE} = 200 \mu\text{A}$ $2.5 \text{ V} \leq V_{TH} \leq 4.9 \text{ V, } I_{SOURCE} = 500 \mu\text{A}$ | V _{OH} | 0.8 V _{CC} | - | - | V | | RESET Output Voltage Low (No Load) (MAX810) $V_{CC} = V_{TH} + 0.2 \text{ V} \\ 1.6 \text{ V} \leq V_{TH} \leq 2.0 \text{ V, I}_{SINK} = 0.5 \text{ mA} \\ 2.1 \text{ V} \leq V_{TH} \leq 4.0 \text{ V, I}_{SINK} = 1.2 \text{ mA} \\ 4.1 \text{ V} \leq V_{TH} \leq 4.9 \text{ V, I}_{SINK} = 3.2 \text{ mA} $ | V _{OL} | - | - | 0.3 | V | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 7. Production testing done at T_A = 25°C, over temperature limits guaranteed by design. 8. Contact your **onsemi** sales representative for timeout options availability for other threshold voltage options. #### TYPICAL OPERATING CHARACTERISTICS Figure 4. Supply Current vs. Supply Voltage Figure 5. Supply Current vs. Supply Voltage Figure 6. Supply Current vs. Supply Voltage Figure 7. Normalized Reset Threshold Voltage vs. Temperature Figure 8. Supply Current vs. Temperature (No Load, MAX809) Figure 9. Supply Current vs. Temperature (No Load, MAX810) #### TYPICAL OPERATING CHARACTERISTICS Figure 10. Output Voltage Low vs. Supply Voltage Figure 11. Output Voltage High vs. Supply Voltage 4.0 4.5 100 125 5.0 Figure 12. Power-Down Reset Delay vs. Temperature and Overdrive (V_{TH} = 1.2 V) Figure 13. Power-Down Reset Delay vs. Temperature and Overdrive (V_{TH} = 4.9 V) Figure 14. Normalized Power-Up Reset vs. **Temperature** #### **Detail Operation Description** The MAX809/810 series microprocessor reset supervisory circuits are designed to monitor the power supplies in digital systems and provide a reset signal to the processor without any external components. Figure 2 shows the timing diagram and a typical application below. Initially consider that input voltage $V_{\rm CC}$ is at a nominal level greater than the voltage detector upper threshold ($V_{\rm TH}$). And the RESET (RESET) output voltage (Pin 2) will be in the high state for MAX809, or in the low state for MAX 810 devices. If there is an input power interruption and V_{CC} becomes significantly deficient, it will fall below the lower detector threshold (V_{TH-}). This event causes the RESET output to be in the low state for the MAX809, or in the high state for the NCP810 devices. After completion of the power interruption, V_{CC} will rise to its nominal level and become greater than the V_{TH} . This sequence activates the internal oscillator circuitry and digital counter to count. After the count of the timeout period, the reset output will revert back to the original state. Figure 15. Timing Waveforms #### **APPLICATIONS INFORMATION** #### **V_{CC}** Transient Rejection The MAX809 provides accurate V_{CC} monitoring and reset timing during power-up, power-down, and brownout/sag conditions, and rejects negative-going transients (glitches) on the power supply line. Figure 16 shows the maximum transient duration vs. maximum negative excursion (overdrive) for glitch rejection. Any combination of duration and overdrive which lies **under** the curve will **not** generate a reset signal. Combinations above the curve are detected as a brownout or power-down. Typically, transient that goes 100 mV below the reset threshold and lasts 5.0 μ s or less will not cause a reset pulse. Transient immunity can be improved by adding a capacitor in close proximity to the V_{CC} pin of the MAX809. Figure 16. Maximum Transient Duration vs. Overdrive for Glitch Rejection at 25°C #### **RESET** Signal Integrity During Power-Down The MAX809 $\overline{\text{RESET}}$ output is valid to $V_{CC}=1.0~\text{V}$. Below this voltage the output becomes an "open circuit" and does not sink current. This means CMOS logic inputs to the Microprocessor will be floating at an undetermined voltage. Most digital systems are completely shutdown well above this voltage. However, in situations where $\overline{\text{RESET}}$ must be maintained valid to V_{CC} = 0 V, a pull-down resistor must be connected from \overline{RESET} to ground to discharge stray capacitances and hold the output low (Figure 17). This resistor value, though not critical, should be chosen such that it does not appreciably load \overline{RESET} under normal operation (100 k Ω will be suitable for most applications). Figure 17. Ensuring RESET Valid to V_{CC} = 0 V #### Processors With Bidirectional I/O Pins Some Microprocessor's have bidirectional reset pins. Depending on the current drive capability of the processor pin, an indeterminate logic level may result if there is a logic conflict. This can be avoided by adding a $4.7~\mathrm{k}\Omega$ resistor in series with the output of the MAX809 (Figure 18). If there are other components in the system which require a reset signal, they should be buffered so as not to load the reset line. If the other components are required to follow the reset I/O of the Microprocessor, the buffer should be connected as shown with the solid line. Figure 18. Interfacing to Bidirectional Reset I/O # ORDERING, MARKING AND THRESHOLD INFORMATION | Part Number | V _{TH} * (V) | Timeout* (ms) | Description | Marking | Package | Shipping [†] | |-------------------------------------|-----------------------|---------------|-------------------|---------------------|---------------------|-------------------------------| | MAX809STRG | 2.93 | 140-460 | | SPT | SOT23-3 | 2000 / Tana ⁹ Baal | | NCV809SN293D2T1G | 2.93 | 20-66 | | ACE (Pb-Free) | | 3000 / Tape & Reel | | NCV809SQ293T1G*
(In Development) | 2.93 | 140–460 | Push-Pull RESET | ZG | SC70-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809SQ308T1G | 3.08 | 140–460 | | ZH | (FD-FTee) | | | MAX810SQ270T1G | 2.70 | 20-66 | Push-Pull RESET | ZB SC70-3 (Pb-Free) | | 2000 / Tana ⁹ Daal | | MAX810SQ400T1G | 4.00 | 20-66 | Pusii-Puii RESE i | | | 3000 / Tape & Reel | # **DISCONTINUED** (Note 9) | NCV809LTRG | 4.63 | 140–460 | Push-Pull RESET | STA | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | |------------------|------|---------|-----------------|-----|----------------------|--------------------| | NCV809MTRG | 4.38 | 140–460 | Push-Pull RESET | TAT | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | NCV809RTRG | 2.63 | 140–460 | Push-Pull RESET | RPA | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | NCV809STRG | 2.93 | 140–460 | Push-Pull RESET | SUC | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX810LTRG | 4.63 | 140–460 | Push-Pull RESET | SQB | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX810MTRG | 4.38 | 140–460 | Push-Pull RESET | SQA | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX810RTRG | 2.63 | 140–460 | Push-Pull RESET | SPX | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX810SN120T1G | 1.20 | 140–460 | Push-Pull RESET | SSS | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX810SN293D1T1G | 2.93 | 1–3.3 | Push-Pull RESET | SST | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX810SN293D2T1G | 2.93 | 20-66 | Push-Pull RESET | SSU | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX810SN293D3T1G | 2.93 | 100–330 | Push-Pull RESET | SSZ | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX810SQ120T1G | 1.20 | 140–460 | Push-Pull RESET | ZN | SC70-3
(Pb-Free) | 3000 / Tape & Reel | | MAX810SQ263T1G | 2.63 | 140–460 | Push-Pull RESET | ZO | SC70-3
(Pb-Free) | 3000 / Tape & Reel | | MAX810SQ293D1T1G | 2.93 | 1–3.3 | Push-Pull RESET | ZS | SC70-3
(Pb-Free) | 3000 / Tape & Reel | | MAX810SQ293D2T1G | 2.93 | 20-66 | Push-Pull RESET | ZT | SC70-3
(Pb-Free) | 3000 / Tape & Reel | | MAX810SQ293D3T1G | 2.93 | 100–330 | Push-Pull RESET | ZU | SC70-3
(Pb-Free) | 3000 / Tape & Reel | | MAX810SQ293T1G | 2.93 | 140–460 | Push-Pull RESET | ZP | SC70-3
(Pb-Free) | 3000 / Tape & Reel | | MAX810SQ438T1G | 4.38 | 140–460 | Push-Pull RESET | ZQ | SC70-3
(Pb-Free) | 3000 / Tape & Reel | | MAX810SQ463T1G | 4.63 | 140–460 | Push-Pull RESET | ZR | SC70-3
(Pb-Free) | 3000 / Tape & Reel | | MAX810STRG | 2.93 | 140–460 | Push-Pull RESET | SPY | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | # ORDERING, MARKING AND THRESHOLD INFORMATION | Part Number | V _{TH} * (V) | Timeout* (ms) | Description | Marking | Package | Shipping [†] | |----------------------|-----------------------|---------------|-----------------|---------|----------------------|-----------------------| | DISCONTINUED (Note 9 |)) | | | | | | | MAX810TTRG | 3.08 | 140–460 | Push-Pull RESET | SPZ | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809HTRG | 4.55 | 140–460 | Push-Pull RESET | SBD | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809JTRG | 4.00 | 140–460 | Push-Pull RESET | SPR | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809LTRG | 4.63 | 140–460 | Push-Pull RESET | SPW | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809MTRG | 4.38 | 140–460 | Push-Pull RESET | SPV | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809RTRG | 2.63 | 140–460 | Push-Pull RESET | SPS | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809SN120T1G | 1.20 | 140–460 | Push-Pull RESET | SSO | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809SN160T1G | 1.60 | 140–460 | Push-Pull RESET | SAA | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809SN232T1G | 2.32 | 140–460 | Push-Pull RESET | SQP | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809SN293D1T1G | 2.93 | 1–3.3 | Push-Pull RESET | SSP | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809SN293D2T1G | 2.93 | 20–66 | Push-Pull RESET | SSQ | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809SN293D3T1G | 2.93 | 100–330 | Push-Pull RESET | SSR | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809SN490T1G | 4.90 | 140–460 | Push-Pull RESET | SBH | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809SQ120T1G | 1.20 | 140–460 | Push-Pull RESET | ZD | SC70-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809SQ232T1G | 2.32 | 140–460 | Push-Pull RESET | ZE | SC70-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809SQ263T1G | 2.63 | 140–460 | Push-Pull RESET | ZF | SC70-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809SQ293D1T1G | 2.93 | 1–3.3 | Push-Pull RESET | ZK | SC70-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809SQ293D2T1G | 2.93 | 20-66 | Push-Pull RESET | ZL | SC70-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809SQ293D3T1G | 2.93 | 100–330 | Push-Pull RESET | ZM | SC70-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809SQ293T1G | 2.93 | 140–460 | Push-Pull RESET | ZG | SC70-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809SQ400T1G | 4.00 | 140–460 | Push-Pull RESET | SZ | SC70-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809SQ438T1G | 4.38 | 140–460 | Push-Pull RESET | ZI | SC70-3
(Pb-Free) | 3000 / Tape & Reel | | MAX809SQ463T1G | 4.63 | 140–460 | Push-Pull RESET | ZJ | SC70-3
(Pb-Free) | 3000 / Tape & Reel | # ORDERING, MARKING AND THRESHOLD INFORMATION | Part Number | V _{TH} * (V) | Timeout* (ms) | Description | Marking | Package | Shipping [†] | | | |-----------------------|-----------------------|---------------|-----------------|---------|----------------------|-----------------------|--|--| | DISCONTINUED (Note 9) | | | | | | | | | | MAX809TTRG | 3.08 | 140–460 | Push-Pull RESET | SPU | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | | | NCV809SN293D1T1G* | 2.93 | 1–3.3 | Push-Pull RESET | ACT | SOT23-3
(Pb-Free) | 3000 / Tape & Reel | | | [†]For information on tape and reel specifications,including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. ^{**}Contact your **onsemi** sales representative for other threshold voltage options. ^{9.} **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The most current information on these devices may be available on www.onsemi.com. SC-70 (SOT-323) CASE 419 ISSUE R **DATE 11 OCT 2022** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982. - 2. CONTROLLING DIMENSION: INCH | | MILLIMETERS | | | | INCHES | | |-----|-------------|----------|------|-------|----------|-------| | DIM | MIN. | N□M. | MAX. | MIN. | N□M. | MAX. | | Α | 0.80 | 0.90 | 1.00 | 0.032 | 0.035 | 0.040 | | A1 | 0.00 | 0.05 | 0.10 | 0.000 | 0.002 | 0.004 | | A2 | | 0.70 REF | | | 0.028 BS | C | | b | 0.30 | 0.35 | 0.40 | 0.012 | 0.014 | 0.016 | | С | 0.10 | 0.18 | 0.25 | 0.004 | 0.007 | 0.010 | | D | 1.80 | 2.00 | 2.20 | 0.071 | 0.080 | 0.087 | | E | 1.15 | 1.24 | 1.35 | 0.045 | 0.049 | 0.053 | | е | 1.20 | 1.30 | 1.40 | 0.047 | 0.051 | 0.055 | | e1 | 0.65 BSC | | | | 0.026 BS | C | | L | 0.20 | 0.38 | 0.56 | 0.008 | 0.015 | 0.022 | | HE | 2.00 | 2.10 | 2.40 | 0.079 | 0.083 | 0.095 | # GENERIC MARKING DIAGRAM XX = Specific Device Code M = Date Code ■ = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. For additional information on our Pb-Free strategy and soldering details, please download the ID Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D. SOLDERING FOOTPRINT | STYLE 1:
CANCELLED | STYLE 2:
PIN 1. ANODE
2. N.C.
3. CATHODE | STYLE 3:
PIN 1. BASE
2. EMITTER
3. COLLECTOR | STYLE 4:
PIN 1. CATHODE
2. CATHODE
3. ANODE | STYLE 5:
PIN 1. ANODE
2. ANODE
3. CATHODE | | |-----------------------------|---|---|--|--|---------------------------| | STYLE 6: | STYLE 7: | STYLE 8: | STYLE 9: | STYLE 10: | STYLE 11: | | PIN 1. EMITTER | PIN 1. BASE | PIN 1. GATE | PIN 1. ANODE | PIN 1. CATHODE | PIN 1. CATHODE | | 2. BASE | 2. EMITTER | 2. SOURCE | 2. CATHODE | 2. ANODE | CATHODE | | COLLECTOR | COLLECTOR | 3. DRAIN | CATHODE-ANODE | 3. ANODE-CATHODE | CATHODE | | DOCUMENT NUMBER: | 98ASB42819B | Electronic versions are uncontrolled except when accessed directly from the Document Repositor
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | | |------------------|-----------------|---|-------------|--|--|--| | DESCRIPTION: | SC-70 (SOT-323) | | PAGE 1 OF 1 | | | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales