3.3 V/5 V Hex Differential Line Receiver/Driver ## MC100EP116 #### Description The MC100EP116 is a 6-bit differential line receiver based on the EP16 device. The 3.0 GHz bandwidth provided by the high frequency outputs makes the device ideal for buffering of very high speed oscillators. The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single–ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open. The design incorporates two stages of gain, internal to the device, making it an excellent choice for use in high bandwidth amplifier applications. The differential inputs have internal clamp structures which will force the Q output of a gate in an open input condition to go to a LOW state. Thus, inputs of unused gates can be left open and will not affect the operation of the rest of the device. Note that the input clamp will take affect only if both inputs fall 2.5 V below $V_{\rm CC}$. The 100 Series contains temperature compensation. #### **Features** - 260 ps Typical Propagation Delay - Maximum Frequency > 3 GHz Typical - PECL Mode Operating Range: V_{CC} = 3.0 V to 5.5 V with V_{EE} = 0 V - NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -3.0 V to -5.5 V - Open Input Default State - Safety Clamp on Inputs - Q Output Will Default LOW with Inputs Open or at VEE - V_{BB} Output - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant ## ON Semiconductor® www.onsemi.com LQFP-32 FA SUFFIX CASE 561AB ## **MARKING DIAGRAM*** = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or ■ = Pb-Free Package (Note: Microdot may be in either location) *For additional marking information, refer to Application Note <u>AND8002/D</u>. #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | | | | | |---------------|-----------|-----------------------|--|--|--|--| | MC100EP116FAG | | 250 Units / Tray | | | | | | | (Pb-Free) | | | | | | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. 32-Lead LQFP Pinout (Top View) Figure 2. Logic Diagram **Table 1. PIN DESCRIPTION** | PIN | FUNCTION | |------------------|-------------------------------| | D[0:5]*, D[0:5]* | ECL Differential Data Inputs | | Q[0:5], Q[0:5] | ECL Differential Data Outputs | | V _{BB} | Reference Voltage Output | | V _{CC} | Positive Supply | | V _{EE} | Negative Supply | ^{*} Pins will default LOW when left open. ## **Table 2. ATTRIBUTES** | Characteristics | Value | |--|-----------------------------| | Internal Input Pulldown Resistor | 75 kΩ | | Internal Input Pullup Resistor | N/A | | ESD Protection Human Body Model Machine Model Charged Device Model | > 2 kV
> 100 V
> 2 kV | | Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) | Pb-Free Pkg | | LQFP-32 | Level 2 | | Flammability Rating Oxygen Index: 28 to 34 | UL-94 V-0 @ 0.125 in | | Transistor Count | 729 Devices | | Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test | • | ^{1.} For additional information, see Application Note AND8003/D. ## **Table 3. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Units | |------------------|--|--|--|-------------|-------| | V _{CC} | PECL Mode Power Supply | V _{EE} = 0 V | | 6 | V | | V _{EE} | NECL Mode Power Supply | V _{CC} = 0 V | | -6 | V | | VI | PECL Mode Input Voltage
NECL Mode Input Voltage | V _{EE} = 0 V
V _{CC} = 0 V | $\begin{aligned} &V_I \leq V_{CC} \\ &V_I \geq V_{EE} \end{aligned}$ | 6
-6 | V | | l _{out} | Output Current | Continuous
Surge | | 50
100 | mA | | I _{BB} | V _{BB} Sink/Source | | | ±0.5 | mA | | T _A | Operating Temperature Range | | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | θJA | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | 32 LQFP
32 LQFP | 80
55 | °C/W | | θ _{JC} | Thermal Resistance (Junction-to-Case) | Standard Board | 32 LQFP | 12 to 17 | °C/W | | T _{sol} | Wave Solder Pb-Free | | | 265 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Table 4. 100EP DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 2) | | | | -40°C 25°C | | | | | | | | | |--------------------|--|------|------------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 60 | 75 | 90 | 60 | 80 | 95 | 60 | 85 | 95 | mA | | V _{OH} | Output HIGH Voltage (Note 3) | 2155 | 2280 | 2405 | 2155 | 2280 | 2405 | 2155 | 2280 | 2405 | mV | | V _{OL} | Output LOW Voltage (Note 3) | 1355 | 1480 | 1605 | 1355 | 1480 | 1605 | 1355 | 1480 | 1605 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 2075 | | 2420 | 2075 | | 2420 | 2075 | | 2420 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 1355 | | 1675 | 1490 | | 1675 | 1490 | | 1675 | mV | | V_{BB} | Output Voltage Reference | 1775 | 1875 | 1975 | 1775 | 1875 | 1975 | 1775 | 1875 | 1975 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 4) | 2.0 | | 3.3 | 2.0 | | 3.3 | 2.0 | | 3.3 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - 2. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.3 V to -2.2 V. - 3. All loading with 50 Ω to V_{CC} 2.0 V. - 4. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Table 5. 100EP DC CHARACTERISTICS, PECL $V_{CC} = 5.0 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 5) | | | | -40°C | | 25°C | | | | | | | |--------------------|--|------|-------|------|------|------|------|------|------|------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 60 | 75 | 90 | 60 | 80 | 95 | 60 | 85 | 95 | mA | | V _{OH} | Output HIGH Voltage (Note 6) | 3855 | 3980 | 4105 | 3855 | 3980 | 4105 | 3855 | 3980 | 4105 | mV | | V _{OL} | Output LOW Voltage (Note 6) | 3055 | 3180 | 3305 | 3055 | 3180 | 3305 | 3055 | 3180 | 3305 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | 3775 | | 4120 | 3775 | | 4120 | 3775 | | 4120 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | 3790 | | 3375 | 3190 | | 3375 | 3190 | | 3375 | mV | | V_{BB} | Output Voltage Reference | 3475 | 3575 | 3675 | 3475 | 3575 | 3675 | 3475 | 3575 | 3675 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 7) | 2.0 | | 5.0 | 2.0 | | 5.0 | 2.0 | | 5.0 | ٧ | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - 5. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +2.0 V to -0.5 V. - 6. All loading with 50 Ω to V_{CC} 2.0 V. - V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Table 6. 100EP DC CHARACTERISTICS, NECL V_{CC} = 0 V, V_{EE} = -5.5 V to -3.0 V (Note 8) | | | -40°C | | | 25°C | | | | | | | |--------------------|---|----------------------|-------|-------|----------------------|-------|-------|----------------------|-------|-------|----------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Power Supply Current | 60 | 75 | 90 | 60 | 80 | 95 | 60 | 85 | 95 | mA | | V _{OH} | Output HIGH Voltage (Note 9) | -1145 | -1020 | -895 | -1145 | -1020 | -895 | -1145 | -1020 | -895 | mV | | V _{OL} | Output LOW Voltage (Note 9) | -1945 | -1820 | -1695 | -1945 | -1820 | -1695 | -1945 | -1820 | -1695 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended) | -1225 | | -880 | -1225 | | -880 | -1225 | | -880 | mV | | V _{IL} | Input LOW Voltage (Single-Ended) | -1945 | | -1625 | -1945 | | -1625 | -1945 | | -1625 | mV | | V_{BB} | Output Voltage Reference | -1525 | -1425 | -1325 | -1525 | -1425 | -1325 | -1525 | -1425 | -1325 | mV | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 10) | V _{EE} +2.0 | | 0.0 | V _{EE} +2.0 | | 0.0 | V _{EE} +2.0 | | 0.0 | V | | I _{IH} | Input HIGH Current | | | 150 | | | 150 | | | 150 | μΑ | | I _{IL} | Input LOW Current | 0.5 | | | 0.5 | | | 0.5 | | | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Table 7. AC CHARACTERISTICS $V_{CC} = 0 \text{ V}$; $V_{EE} = -3.0 \text{ V}$ to -5.5 V or $V_{CC} = 3.0 \text{ V}$ to 5.5 V; $V_{EE} = 0 \text{ V}$ (Note 11) | | | | -40°C | | | 25°C | | | | | | | |--|--|------|-------|-----|------------|------|-----|------------|-----|-----|------------|------| | Symbol | Characteristic | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | f _{max} | Maximum Frequency
(See Figure 3 F _{max} /JITTER) | | | > 3 | | | > 3 | | | > 3 | | GHz | | t _{PLH} ,
t _{PHL} | Propagation Delay to
Output Differential | | 160 | 250 | 340 | 160 | 260 | 340 | 190 | 300 | 380 | ps | | tskew | Duty Cycle Skew (Note 12) | | | 5.0 | 20 | | 5.0 | 20 | | 5.0 | 20 | ps | | tskew | Within Device Skew
Device to Device Skew (Note 12) | | | | 100
180 | | | 100
180 | | | 100
190 | ps | | tuitter | Cycle-to-Cycle Jitter
(See Figure 3 F _{max} /JITTER) | | | 0.2 | < 1 | | 0.2 | < 1 | | 0.2 | < 1 | ps | | V _{PP} | Input Voltage Swing
(Differential Configuration) | | 150 | 800 | 1200 | 150 | 800 | 1200 | 150 | 800 | 1200 | mV | | t _r
t _f | Output Rise/Fall Times
(20% – 80%) | Q, Q | 90 | 150 | 220 | 90 | 160 | 240 | 90 | 160 | 250 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. ^{8.} Input and output parameters vary 1:1 with V_{CC} . ^{9.} All loading with 50 Ω to V_{CC} – 2.0 V. ^{10.} V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. ^{11.} Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V. ^{12.} Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. Figure 3. F_{max}/Jitter Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices.) #### **Resource Reference of Application Notes** AN1405/D - ECL Clock Distribution Techniques AN1406/D - Designing with PECL (ECL at +5.0 V) AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit AN1504/D - Metastability and the ECLinPS Family AN1568/D - Interfacing Between LVDS and ECL AND8001/D - The ECL Translator Guide AND8001/D - Odd Number Counters Design AND8002/D - Marking and Date Codes AND8020/D - Termination of ECL Logic Devices AND8066/D - Interfacing with ECLinPS AND8090/D - AC Characteristics of ECL Devices ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. LQFP-32, 7x7 CASE 561AB-01 ISSUE O **DATE 19 JUN 2008** ALL DIMENSIONS IN MM | DOCUMENT NUMBER: | 98AON30893E | Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | | | |------------------|-------------------|--|-------------|--|--|--|--| | DESCRIPTION: | 32 LEAD LQFP, 7X7 | | PAGE 1 OF 1 | | | | | ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales