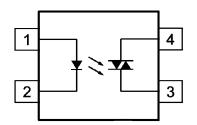


DESCRIPTION

The MF3009, MF301x and MF302x series of devices consist of a GaAs infrared emitting diode optically coupled to a light activated bilateral triac. They are designed for use with a discrete power triac in the control of resistive and inductive loads operating in 110 to 240 VAC lines.

FEATURES

- Non Zero Crossing (Random Phase)
- V_{DRM}
 - MF3009 250V
 - MF301x 250V
 - MF302x 400V
- Isolation Voltage 3750V_{RMS}
- Wide Operating Temperature Range -40°C to 110°C
- Pb Free and RoHS Compliant
- UL File E91231 for MF302x series.


APPLICATIONS

- Solenoid / Valve Controls
- Lamp Ballasts
- Light Dimming Controls
- AC Motor Drivers
- Temperature Controls
- Solid State Relays

ORDER INFORMATION

Available in Tape & Reel

- Anode
- 2 Cathode
- 3 Main Terminal 2
- 4 Main Terminal 1

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C)

Stresses exceeding the absolute maximum ratings can cause permanent damage to the device.

Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

Input

Forward Current	60mA
Reverse Voltage	6V
Power dissipation	100mW

Output

Off-state Output Terminal Voltage	
MF3009	250V
MF301x	250V
MF302x	400V
ON-state RMS Current	70mA
Peak Repetitive Surge Current	1A
Power Dissipation	300mW

Total Package

Isolation Voltage	$3750V_{RMS}$
Operating Temperature	-40 to 110 °C
Storage Temperature	-55 to 150 °C
Lead Soldering Temperature (10s)	260°C

ISOCOM COMPONENTS 2004 LTD

Unit 25B, Park View Road West, Park View Industrial Estate Hartlepool, Cleveland, TS25 1PE, United Kingdom Tel: +44 (0)1429 863 609 Fax: +44 (0)1429 863 581 e-mail: sales@isocom.co.uk

http://www.isocom.com

ISOCOM COMPONENTS ASIA LTD

Hong Kong Office, Block A, 8/F, Wah Hing Industrial mansion, 36 Tai Yau Street, San Po Kong, Kowloon, Hong Kong. Tel: +852 2995 9217 Fax: +852 8161 6292 e-mail: sales@isocom.com.hk

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

INPUT

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Forward Voltage	$V_{\rm F}$	$I_F = 10 \text{mA}$		1.2	1.5	V
Reverse Current	I_R	$V_R = 6V$			10	μΑ

OUTPUT

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Peak Off-state Current Either Direction	I_{DRM}	$V_{DRM} = Rated V_{DRM}$ $I_F = 0mA$			100	nA
		(Note 1)				
Peak Blocking Voltage	V_{DRM}	$I_{DRM} = 100 \text{nA}$				V
		MF3009	250			
		MF3010 / MF3011 / MF3012	250			
		MF3020 / MF3021 MF3022 / MF3023 MF3024	400			
Peak On-state Voltage Either Direction	V_{TM}	$I_{TM} = 100 \text{mA Peak}$ $I_F = \text{Rated } I_{FT}$			2.5	V
Critical Rate of Rise of Off-state Voltage	dv/dt	$I_F = 0mA$		10		V/µs

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

COUPLED

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Input Trigger Current	I_{FT}	$V_{TM} = 3V$				mA
		MF3009 / MF3020			30	
		MF3010 / MF3021			15	
		MF3011 / MF3022			10	
		MF3012 / MF3023			5	
		MF3024			3	
		(Note 2)				
Holding Current Either Direction	I_{H}			3	5	mA
Turn-on Time	$t_{ m ON}$	$\begin{aligned} V_{O} &= 6V, \\ R_{L} &= 100\Omega, \\ I_{F} &= 20\text{mA} \end{aligned}$			100	μs

ISOLATION

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Isolation Voltage	$V_{\rm ISO}$	R.H. = 40% - 60%, t = 1 min	3750			V_{RMS}
		(Note 3)				

Note 1: Test Voltage must be applied within dv/dt rating.

Note 2 : Guaranteed to trigger at an I_F value less than or equal to max I_{FT} , recommended I_F lies between Rated I_{FT} to Absolute Max I_F .

Note 3: Measured with input leads shorted together and output leads shorted together.

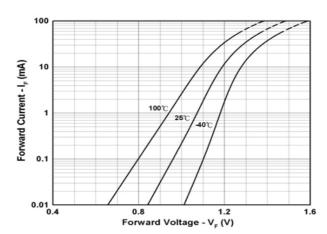


Fig 1 Forward Current vs Forward Voltage

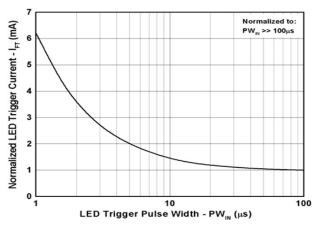


Fig 3 Normalized LED Trigger Current vs Trigger Pulse Width

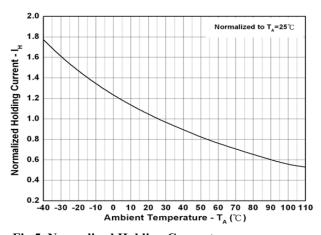


Fig 5 Normalized Holding Current vs Ambient Temperature

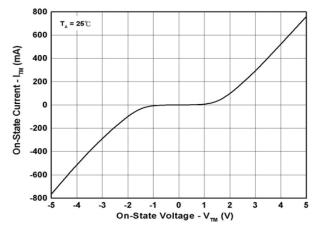


Fig 2 On-State Characteristics

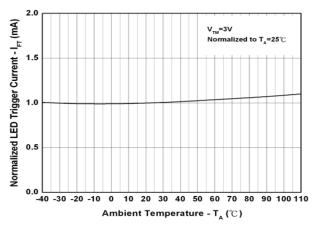
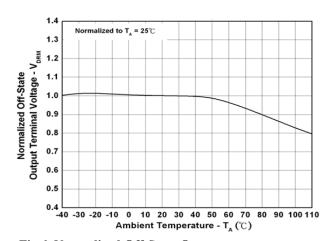
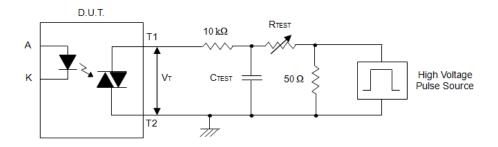


Fig 4 Normalized LED Trigger Current vs Ambient Temperature

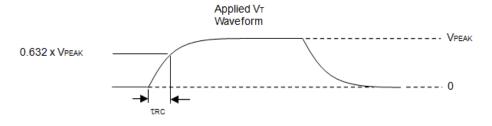
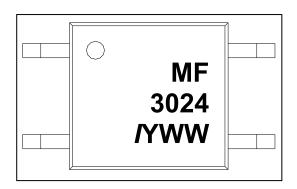

Fig 6 Normalized Off-State Output Terminal Voltage vs Ambient Temperature

Fig 7 Leakage Current vs Ambient Temperature

$$dv/dt = \frac{0.632 \text{ x V}_{\text{PEAK}}}{\tau_{\text{RC}}}$$

Fig 8 Static dv/dt Test Circuit

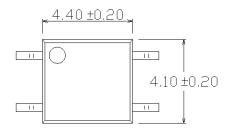

ORDER INFORMATION

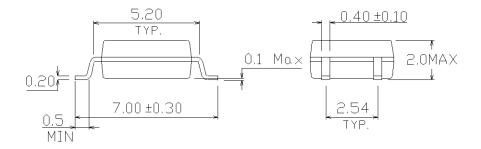
MF3009, MF301x, MF302x					
After PN	PN	Description	Packing quantity		
None	MF3009 MF3010, MF3011, MF3012 MF3020, MF3021, MF3022, MF3023, MF3024	Surface Mount Tape & Reel	3000 pcs per reel		

NOTE: MF3024 may be supported when ordering any of the following Part Numbers, MF3009, MF3010, MF3011, MF3012, MF3020, MF3021, MF3022, MF3023.

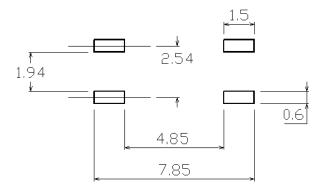
DEVICE MARKING

Note: MF3024 is used as example

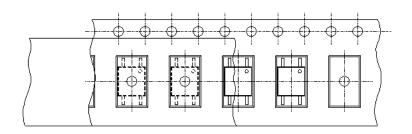

MF3024 denotes Device Part Number

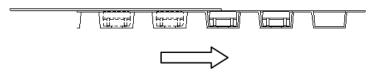

denotes Isocom

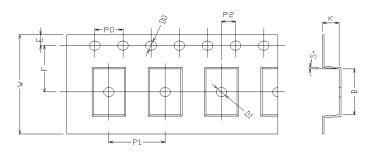
Y denotes 1 digit Year code
WW denotes 2 digit Week code



PACKAGE DIMENSIONS (mm)

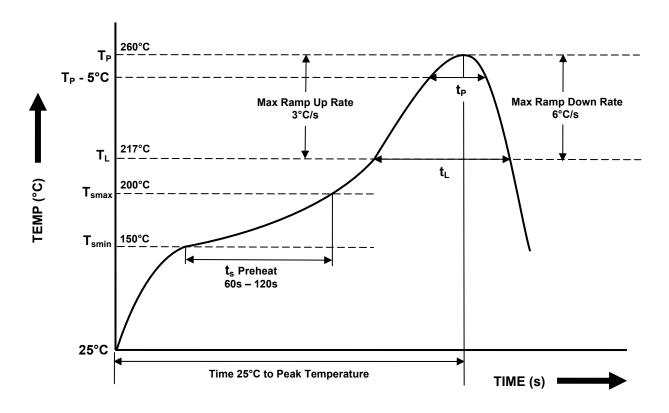



RECOMMENDED PAD LAYOUT (mm)



TAPE AND REEL PACKAGING (mm)

Direction of feed from reel



Dimension No.	Α	В	D0	D1	E	F
Dimension(mm)	4.4±0.1	7.4±0.1	1.5+0.1/-0	1.5±0.1	1.75±0.1	7.5±0.1
Dimension No.	P0	P1	P2	t	W	K0
	4.0±0.15		2.0±0.1	0.25±0.03	16.0±0.2	2.4±0.1

IR REFLOW SOLDERING TEMPERATURE PROFILE

One Time Reflow Soldering is Recommended. Do not immerse device body in solder paste.

Profile Details	Conditions
$ \begin{array}{l} \textbf{Preheat} \\ \textbf{- Min Temperature } (T_{SMIN}) \\ \textbf{- Max Temperature } (T_{SMAX}) \\ \textbf{- Time } T_{SMIN} \text{ to } T_{SMAX} \left(t_s\right) \end{array} $	150°C 200°C 60s – 120s
$\begin{tabular}{lll} \textbf{Soldering Zone} \\ - & \mbox{Peak Temperature } (T_P) \\ - & \mbox{Liquidous Temperature } (T_L) \\ - & \mbox{Time within } 5^{\circ}\mbox{C of Actual Peak Temperature } (T_P - 5^{\circ}\mbox{C}) \\ - & \mbox{Time maintained above } T_L \ (t_L) \\ - & \mbox{Ramp Up Rate } (T_L \ \mbox{to } T_P) \\ - & \mbox{Ramp Down Rate } (T_P \ \mbox{to } T_L) \\ \end{tabular}$	260°C 217°C 30s 60s – 100s 3°C/s max 6°C/s max
Average Ramp Up Rate (T _{smax} to T _P)	3°C/s max
Time 25°C to Peak Temperature	8 minutes max

DISCLAIMER

Isocom Components is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing Isocom Components products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such Isocom Components products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that Isocom Components products are used within specified operating ranges as set forth in the most recent Isocom Components products specifications.

The Isocom Components products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These Isocom Components products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation Instruments, traffic signal instruments, combustion control instruments, medical Instruments, all types of safety devices, etc... Unintended Usage of Isocom Components products listed in this document shall be made at the customer's own risk.

Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by Isocom Components for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of Isocom Components or others.

The information contained herein is subject to change without notice.