PF5200

Power management integrated circuit (PMIC) for high performance applications

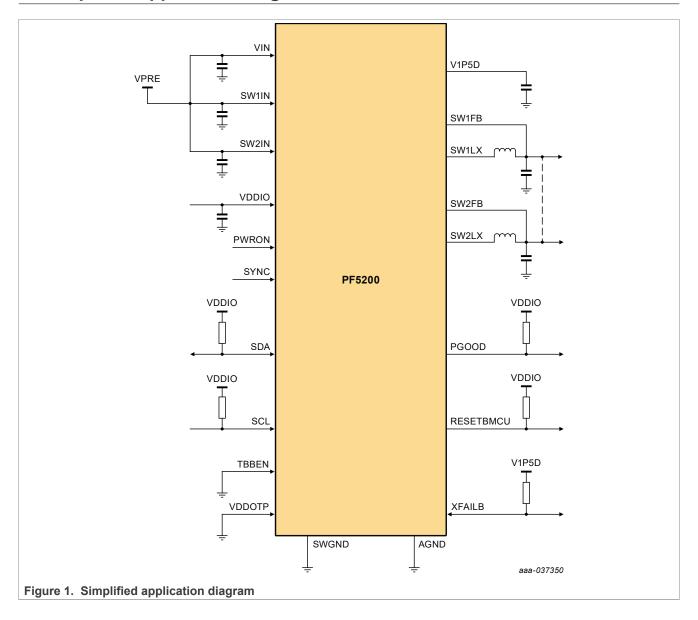
Rev. 3.2 — 20 February 2024

Product data sheet

1 Overview

The PF5200 integrates two high performance buck regulators. It can operate as a stand-alone point-of-load regulator IC, or as a companion chip to a larger PMIC.

Built-in one-time programmable (OTP) memory stores key startup configurations, drastically reducing external components typically used to set output voltage and sequence of regulators. Regulator parameters are adjustable through high-speed I²C after start up offering flexibility for different system states.


Power management integrated circuit (PMIC) for high performance applications

2 Features

- Two high efficiency buck converters
- Watchdog timer/monitor
- Monitoring circuit to fit ASIL B safety level
- One-time programmable device configuration
- 3.4 MHz I²C communication interface
- 32-pin FC-QFN package with wettable flank

Power management integrated circuit (PMIC) for high performance applications

3 Simplified application diagram

Power management integrated circuit (PMIC) for high performance applications

4 Ordering information

Table 1. Device options

Type number	Package				
Type number	Name Description		Version		
MPF5200AMB (Automotive part, ASIL B)	LIMOFNICO	Plastic thermal enhanced very thin quad flat pack; no	0.070000 0/00)		
MPF5200AMM (Automotive/Industrial part, QM)		leads, wettable flank, 32 terminals, 0.5 mm pitch, 5 mm x 5 mm x 0.68 mm body	SOT2039-2(SC)		

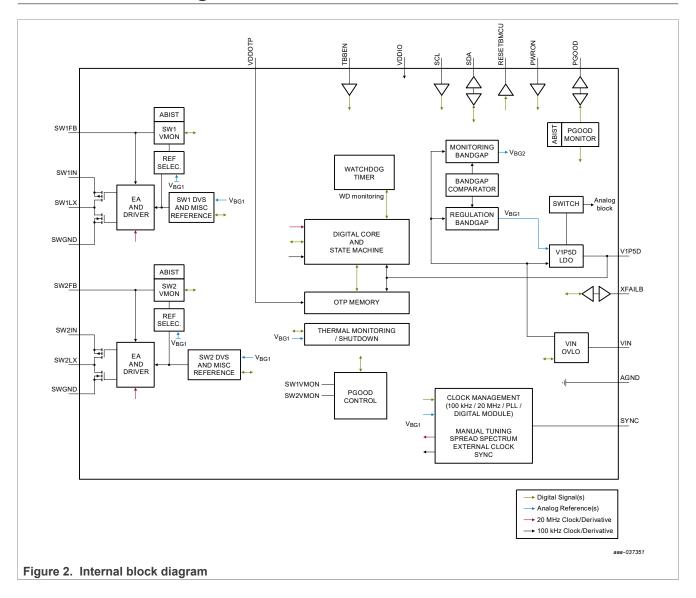
Table 2. Ordering information

Part numbering ^[1]	Target market	NXP processor	System comments	Safety	OTP ID
MPF5200AMBA0ES	Automotive	n/a	Not Programmed	В	BA0
MPF5200AMBA1ES	Automotive	LX2160A	Ethernet	В	http://nxp.com/MPF5200AMBA1ES-OPT-Report
MPF5200AMBA2ES	Automotive	LX2160A	DDR (I2C: 0x0A)	В	http://nxp.com/MPF5200AMBA2ES-OTP-Report
MPF5200AMBA3ES	Automotive	LX2160A	DDR (I2C: 0x0B)	В	http://nxp.com/MPF5200AMBA3ES-OTP-Report
MPF5200AMBA4ES	Automotive	S32R45	Core	В	http://nxp.com/MPF5200AMBA4ES-OTP-Report
MPF5200AMMG0ES	Automotive/Industrial	n/a	Not Programmed	QM	MG0
MPF5200AMMG2ES	Automotive/Industrial	LA1224	Core (I2C: 0x09)	QM	http://nxp.com/MPF5200AMMG2ES-OTP-Report
MPF5200AMMG3ES	Automotive/Industrial	LA1224	DDR (I2C:0x0A)	QM	http://nxp.com/MPF5200AMMG3ES-OTP-Report

^[1] To order parts in tape and reel, add the R2 suffix to the part number.

OTP emulation and programming performed by the customer is allowed during engineering development using NXP's latest graphical user interface and socketed evaluation board.

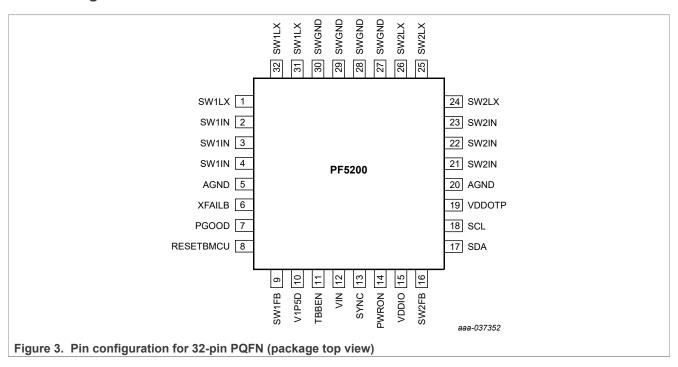
Customer is not allowed to perform OTP programming for production purposes. Only NXP or a recommended third party are allowed to program the device for production purposes.


Power management integrated circuit (PMIC) for high performance applications

5 Applications

- Automotive Infotainment
- Automotive ADAS
- High-end consumer and industrial

Power management integrated circuit (PMIC) for high performance applications


6 Internal block diagram

Power management integrated circuit (PMIC) for high performance applications

7 Pinning information

7.1 Pinning

7.2 Pin description

Table 3. Pin description

QFN pin number	Pin name	Pin description	Min	Max	Units
1	SW1LX	SW1 switching node	-0.3	6.0	V
2	SW1IN	SW1 input supply	-0.3	6.0	V
3	SW1IN	SW1 input supply	-0.3	6.0	V
4	SW1IN	SW1 input supply	-0.3	6.0	V
5	AGND	Analog ground	-0.3	0.3	V
6	XFAILB	XFAILB bidirectional input/output	-0.3	6.0	V
7	PGOOD	PGOOD output	-0.3	6.0	V
8	RESETBMCU	RESETBMCU output	-0.3	6.0	V
9	SW1FB	SW1 feedback node	-0.3	6.0	V
10	V1P5D	1.6 V regulator output	-0.3	2.0	V
11	TBBEN	TBBEN input	-0.3	6.0	V
12	VIN	Power supply	-0.3	6.0	V
13	SYNC	Clock synchronization input/output	-0.3	6.0	V
14	PWRON	PWRON input	-0.3	6.0	V
15	VDDIO	IO buffer supply	-0.3	6.0	V
16	SW2FB	SW2 feedback node	-0.3	6.0	V
17	SDA	I ² C SDA signal	-0.3	6.0	V
18	SCL	I ² C SCL signal	-0.3	6.0	V
19	VDDOTP	VDDOTP input	-0.3	10	V

PF5200

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Power management integrated circuit (PMIC) for high performance applications

Table 3. Pin description...continued

QFN pin number	Pin name	Pin description	Min	Max	Units
20	AGND	Analog ground	-0.3	0.3	V
21	SW2IN	SW2 input supply	-0.3	6.0	V
22	SW2IN	SW2 input supply	-0.3	6.0	V
23	SW2IN	SW2 input supply	-0.3	6.0	V
24	SW2LX	SW2 switching node	-0.3	6.0	V
25	SW2LX	SW2 switching node	-0.3	6.0	V
26	SW2LX	SW2 switching node	-0.3	6.0	V
27	SWGND	Power ground	-0.3	0.3	V
28	SWGND	Power ground	-0.3	0.3	V
29	SWGND	Power ground	-0.3	0.3	V
30	SWGND	Power ground	-0.3	0.3	V
31	SW1LX	SW1 switching node	-0.3	6.0	V
32	SW1LX	SW1 switching node	-0.3	6.0	V
	EPAD	Exposed pad. Connect to ground	-0.3	0.3	V

Power management integrated circuit (PMIC) for high performance applications

8 Absolute maximum ratings

Table 4. Absolute maximum ratings

Symbol	Parameter	Min	Тур	Max	Unit
VIN	Main input supply voltage [1]	-0.3	_	6.0	V
SWxIN	Regulator input supply voltage [1]	-0.3	_	6.0	V
VDDOTP	OTP programming input supply voltage	-0.3	_	10	V

Pin reliability may be affected if system voltages are above the maximum operating range of 5.5 V for extended period of time. To minimize system reliability impact, system must not operate above 5.5 V for more than 1800 sec over the lifetime of the device.

Power management integrated circuit (PMIC) for high performance applications

9 Connection of unused pins

Table 5. Connection of unused pins

Name	Connection if not used	Comment
SW1LX	Open	
XFAILB	Open	When the XFAILB pin is left open, the OTP_XFAILB_EN bit must be disabled
PGOOD	Open	
RESETBMCU	Open	
SWxFB	Open	
TBBEN	GND	
SYNC	Open	
VDDOTP	GND	

Power management integrated circuit (PMIC) for high performance applications

10 ESD ratings

Table 6. ESD ratings

All ESD specifications are compliant with AEC-Q100 specification.

Symbol	Parameter	Min	Тур	Max	Unit
V _{ESD}	Human body model [1]	_	_	2000	V
V _{ESD}	Charge device model [1]	_	_	500	V
I _{LATCHUP}	Latch-up current	_	_	100	mA

^[1] ESD testing is performed in accordance with the human body model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), and the charge device model (CDM), robotic (CZAP = 4.0 pF).

Power management integrated circuit (PMIC) for high performance applications

11 Thermal characteristics

Table 7. Thermal characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _A	Ambient operating temperature	-40	_	125	°C
TJ	Junction temperature	-40	_	150	°C
T _{ST}	Storage temperature range	-55	_	150	°C
T _{PPRT}	Peak package reflow temperature	_	_	260	°C

Table 8. QFN32 thermal resistance and package dissipation ratings

Symbol	Parameter	Тур	Unit
$R_{\theta JA}$	Junction to ambient thermal resistance [1] [2] JESD51-9, 2s2p	36.2	°C/W
Ψ_{JT}	Junction to top of package thermal characterization parameter JESD51-9, 2s2p	0.3	°C/W
$R_{\theta JC(top)}$	ourseless to each (top) are many constants	22.9	°C/W
R _{0JC(bottom)}	Junction to case (bottom) thermal resistance [2] [4]	3.3	°C/W

^[1] Determined in accordance to JEDEC JESD51-2A natural convection environment and uniform power. Thermal resistance data in this report is solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not meant to predict the performance of a package in an application-specific environment.

^[2] Thermal test board meets JEDEC specification for this package (JESD51-7, 2s2p). PCB has a 3×3 array of thermal via under the exposed pad.

^[3] Case (top) temperature is the surface temperature of package top when heat is extracted from the top of the package.

^[4] Case (bottom) temperature is the surface temperature of package leads when heat is extracted from the bottom of the package.

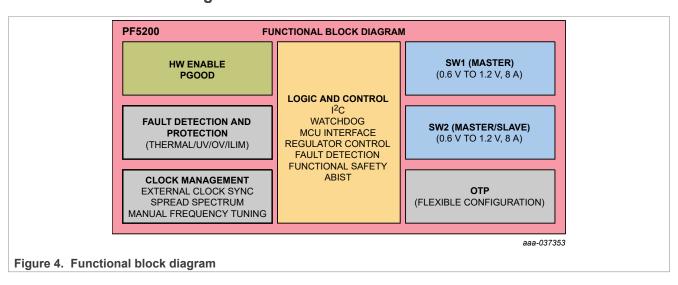
Power management integrated circuit (PMIC) for high performance applications

12 Operating conditions

Table 9. Operating conditions

Symbol	Parameter	Min	Тур	Max	Unit
V _{IN}	Main input supply voltage	UVDET	_	5.5	V

Power management integrated circuit (PMIC) for high performance applications


13 General description

13.1 Features

The PF5200 is a power management integrated circuit (PMIC) designed to be the primary core power supply for NXP high-end ADAS application processors.

- · Buck regulators
 - SW1 and SW2: 0.6 V to 1.2 V; 8000 mA; 1.5 %accuracy
 - Dynamic voltage scaling (DVS or soft start)
 - Configurable as dual phase regulator
 - Programmable current limit
 - Spread-spectrum and manual tuning of switching frequency
- · PGOOD output and monitor
- Clock synchronization through configurable input/output sync pin
- · System features
 - Fast PMIC startup
 - Advanced state machine for seamless processor interface
 - High speed I²C interface support (up to 3.4 MHz)
 - Programmable DVS sequence and power down sequence
 - Programmable regulator configuration
- OTP (One-time programmable) memory for device configuration
- · Monitoring circuit to fit ASIL B safety level
 - Independent voltage monitoring with programmable fault protection
 - Advance thermal monitoring and protection
 - Watchdog monitoring and programmable internal watchdog counter
 - I²C CRC and write protection mechanism
 - Analog built-in self-test (ABIST)

13.2 Functional block diagram

PF5200

Power management integrated circuit (PMIC) for high performance applications

13.3 Power tree summary

The following table provides a summary of the voltage regulators in the PF5200.

Table 10. Voltage supply summary

Regulator	Туре	Input supply	Regulated output range (V)	VOUT programmable step (mV)	IRATED (mA)
SW1	Buck	SW1IN	0.6 V to 1.2 V	6.25	8000
SW2	Buck	SW2IN	0.6 V to 1.2 V	6.25	8000

13.4 Device differences

Table 11. Device differences

Description	PF5200 non-safety	PF5200 ASIL B	Bits not available on PF5200 non- safety
 During the self-test, the device checks: The high speed 20 MHz oscillator circuit is operating within a maximum of 15 % tolerance A CRC is performed on the mirror registers during the self-test routine to ensure the integrity of the registers before powering up The output of both the voltage generation bandgap and the monitoring bandgap are not more than 4 % to 12 % apart from each other ABIST test on all voltage monitors and toggling signals 	Not available	Available	AB_SWx_OV AB_SWx_UV STEST_NOK AB_RUN
Fail-safe state: to shutdown the system in case of critical failures cycling the PMIC ON/OFF.	Not available	Available	FS_CNT[3:0] OTP_FS_BYPASS OTP_FS_MAX_CNT[3:0] OTP_FS_OK_TIMER[2:0]
Secure I ² C write: I ² C write procedure to modify registers dedicated to safety features (I ² C CRC is still available).	Not available	Available	I2C_SECURE_EN OTP_I2C_SECURE _EN (always 0) RANDOM_GEN[7:0] RANDOM_CHK[7:0]

Power management integrated circuit (PMIC) for high performance applications

14 State machine

The PF5200 features a state of the art state machine for seamless processor interface. The state machine handles the IC start up, provides fault monitoring and reporting, and protects the IC and the system during fault conditions.

Power management integrated circuit (PMIC) for high performance applications

Table 12 lists the conditions for the different state machine transitions.

Power management integrated circuit (PMIC) for high performance applications

Table 12. State machine transition definition

Symbol	Description	Conditions
Transition C	System on to WD reset	1. Hard WD Reset event
Transition D	WD reset to system ON	1. 30 µs delay passed && WD_EVENT_CNT < WD_MAX_CNT
Transition E	WD reset to power down (fault)	1. WD_EVENT_CNT = WD_MAX_CNT
		Transitory OFF state: device pass through LP_Off to QPU_Off (no power up event present) 1. LPM_OFF = 1 && TBBEN = Low
Transition F	LP_Off to QPU_Off (PF5200 QM only)	Power up event from LP_Off state 2. LPM_OFF = 0 && TBBEN = Low && (PWRON = 1 && OTP_PWRON_MODE = 0) && UVDET< VIN < VIN_OVLO (or VIN_OVLO disabled) && TSD && TRIM_NOK = 0 && OTP_NOK = 0
		Power up event from LP_Off state 3. LPM_OFF =0 && TBBEN = Low && (PWRON H to L && OTP_PWRON_MODE = 1) && UVDET < VIN < VIN_OVLO (or VIN_OVLO disabled) && Tj < TSD&& TRIM_NOK = 0 && OTP_NOK = 0
		Transitory OFF state: device pass through LP_Off to QPU_Off (no power up event present) 4. TBBEN = High (V1P5D)
		Transitory off state: device pass through LP_Off to self-test to QPU_Off (no power up event present) 1. LPM_OFF = 1 && TBBEN = Low
	LP Off to self-test (PF5200 ASIL B	Power up event from LP_Off state 2. LPM_OFF = 0 && TBBEN = Low && (PWRON = 1 && OTP_PWRON_MODE = 0) && UVDET< VIN < VIN_OVLO (or VIN_OVLO disabled) && TJ < TSD && TRIM NOK = 0 && OTP_NOK = 0
Transition J	only)	Power up event from LP_Off state 3. LPM_OFF = 0 && TBBEN = Low && (PWRON H to L && OTP_PWRON_MODE = 1 && UVDET < VIN < VIN_OVLO (or VIN_OVLO disabled) && T, < TSD && TRIM_NOK = 0 && OTP_NOK = 0
		Conditions: Transitory OFF state to go into TBB mode. Device pass through LP_Off to self-test to QPU_Off (no power up event present) 4. TBBEN = high (V1P5D)
Transition V	Self-test to QPU_Off (PF5200 ASIL B	1. Pass self-tests
Transition K	only)	2. TBBEN = high (V1P5D)
Transition L	QPU_Off to power up	Transitory QPU_Off state, power on event occurs from LP_Off state after self-test is passed, QPU_Off is just a transitory state until power up sequence starts. 1. LPM_OFF = 0 && TBBEN = Low && TRIM_NOK = 0 && OTP_NOK = 0 && STEST_NOK = 0

PF5200

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Power management integrated circuit (PMIC) for high performance applications

Table 12. State machine transition definition...continued

Symbol	Description	Conditions
		Power up event from QPU_Off state 2. LPM_OFF = 1 && (PWRON = 1 && OTP_PWRON_MODE = 0) && UVDET < VIN < VIN_OVLO (or VIN_OVLO disabled && T_J < TSD && TRIM_NOK = 0 && OTP_NOK = 0 && STEST_NOK=0
		Power up event from QPU_Off state 3. LPM_OFF = 1 && (PWRON H to L && OTP_PWRON_MODE = 1) && UVDET < VIN < VIN_OVLO (or VIN_OVLO disabled) && T_J < TSD && TRIM_NOK = 0 && OTP_NOK = 0 && STEST_NOK = 0
		Power up event from QPU_Off state 4. TBBEN = High && (PWRON = 1 && OTP_PWRON_MODE = 0) && UVDET < VIN < VIN_OVLO (or VIN_OVLO disabled && T_J < TSD && TRIM_NOK = 0 && OTP_NOK = 0 && STEST_NOK=0
		Power up event from QPU_Off state 5. TBBEN = High && (PWRON H to L && OTP_PWRON_MODE = 1) && UVDET < VIN < VIN_OVLO (or VIN_OVLO disabled) && T_J < TSD && TRIM_NOK = 0 && OTP_NOK = 0 && STEST_NOK=0
Transition M	Power up sequence to system ON	RESETBMCU is released as part of the power up sequence
		Requested turn off event 1. OTP_PWRON_MODE = 0 && PWRON = 0
Transition N		Requested turn off event 2. OTP_PWRON_MODE = 1 && (PWRON H to L && PWRON = low for t > TRESET)
(Turn off event)	System ON to power down (turn off)	Requested turn off event 3. PMIC_OFF = 1 && 500µs_Shutdown_Timer_Expired
		Protective turn off event (no PMIC fault) 4. VIN_OVLO_SDWN = 1 && VIN_OVLO detected for longer than VIN_OVLO debounce time
Transition O	Power down (turn off) to LP_Off	Requested turn off event moves directly to LP_Off 1. Power down sequences finished
Transition P	Fail-safe transition to fail-safe state (PF5200 ASIL B only)	1. FS_CNT = OTP_FS_MAX_CNT && OTP_FS_BYPASS = 0
Transition Q	Power up to power down (fault)	Power up failure 1. Failure during power up sequence
Transition R	Self-test to fail-safe transition	1. Self-tests fail 3 times (ST_COUNT = 3) && TBBEN = low
Transition S	Power down (fault) to fail-safe transition	Turn off event due to a fault condition moves to fail-safe transition 1. Power down sequence is finished
Transition II	Fail and transition to LD Off	1. FS_CNT < OTP_FS_MAX_CNT
Transition U	Fail-safe transition to LP_Off	2. OTP_FS_BYPASS = 1
Transition Z (Fault shutdown)	System ON to power down (fault)	Turn off event due to PMIC fault 1. Fault Timer expired

PF5200

Product data sheet

Power management integrated circuit (PMIC) for high performance applications

Table 12. State machine transition definition...continued

Symbol	Description	Conditions
		Turn off event due to PMIC fault 2. FAULT_CNT = FAULT_MAX_CNT
		Turn off event due to PMIC fault 3. Thermal shutdown T _J > TSD

14.1 State descriptions

14.1.1 OTP/TRIM load

Upon VIN application, the V1P5D regulator is turned On automatically. Once the V1P5D crosses the POR threshold, the fuses (for trim and OTP) are loaded into the mirror registers and into the functional I²C registers.

The OTP controller has a CRC error check routine which reports and protects against register loading errors on the mirror registers. If a register loading error is detected, the corresponding TRIM_NOK or OTP_NOK flag is asserted. See <u>Section 18 "OTP/TBB mode"</u> for details on handling fuse load errors.

14.1.2 LP Off state

The LP_Off state is a low power off mode selectable by the LPM_OFF bit during the system On mode. By default, the LPM_OFF = 0 when VIN crosses the UVDET threshold, therefore the state machine stops at the LP_Off state until a valid power up event is present. When LPM_OFF = 1, the state machine transitions automatically to the QPU_Off state if no power up event has been present and waits in the QPU_Off until a valid power up event is present.

The selection of the LPM_OFF bit is based on whether prioritizing low quiescent current (stay in the LP_Off state) or quick power up (move to the QPU_Off state).

If a power up event is started in LP_Off state with LPM_OFF = 0 and a fuse loading error is detected, the PF5200 ignores the power up event and remains in the LP_Off state to avoid any potential damage to the system.

14.1.3 Self-test routine (PF5200 ASIL B only)

When the device transitions from the LP_Off state, the PF5200 turns on all necessary internal circuits as it moves into the self-test routine and performs a self-check routine to verify the integrity of the internal circuits.

During the self-test routine the following blocks are verified:

- The high speed clock circuit is operating within a maximum of 15 % tolerance
- The output of both the voltage generation bandgap (BG1) and the monitoring bandgap (BG2) are not more than 4 % to 12 % apart from each other
- A CRC is performed on the mirror registers during the self-test routine, to ensure the integrity of the registers before powering up
- ABIST test on all voltage monitors.

To allow for varying settling times for the internal bandgap and clocks, the self-test block is executed each 2 ms. If a failure is encountered, the self test internal counter (ST_COUNT) is incremented. After three fails (ST_COUNT = 3), the state machine proceeds to the fail-safe transition.

A failure in the ABIST test sets the corresponding ABIST flag for system information. The MCU is responsible for reading the information and deciding whether the PF5200 can continue with a safe operation. See Section 19.1 "System safety strategy" for the functional safety strategy of PF5200.

Upon a successful self-test, the state machine proceeds to the QPU Off state.

PF5200

All information provided in this document is subject to legal disclaimers

© 2024 NXP B.V. All rights reserved

Power management integrated circuit (PMIC) for high performance applications

14.1.4 QPU_Off state

The QPU_Off state (Quick Power Up state) is a higher power consumption Off mode, in which all internal circuitry required for power on is biased and ready to start a power up sequence.

If LPM_OFF = 1 and no turn on event is present, the device stops at the QPU_Off state, and waits until a valid turn on event is present.

In this state, if VDDIO supply is provided externally, the device is able to communicate through I²C to access and modify the mirror registers in order to operate the device in TBB mode or to program the OTP registers as described in Section 18 "OTP/TBB mode".

If a power up event is started and any of the TRIM_NOK, OTP_NOK or STEST_NOK flags are asserted, the device ignores the power up event and remains in the QPU_Off state. See <u>Section 18 "OTP/TBB mode"</u> for debugging a fuse loading failure.

Upon a power up event, the default configuration from OTP is loaded into their corresponding I²C functional register in the transition from QPU_Off to power up state.

14.1.5 Power up sequence

During the power up sequence, the external regulators are turned on in a predefined order as programmed by the default (OTP) sequence.

The RESETBMCU is also programmed as part of the power up sequence, and it is used as the condition to enter the system On state. The RESETBMCU may be released in the middle of the power up sequence, in this case, the remaining supplies in the power up continues to power up as the device is in the run state. See Section 15.5.2 "Power up sequencing" for details.

14.1.6 System On state

During the system On state, the MCU is powered and out of reset and the system is fully operational.

Register to control the regulators output voltage, regulator enable, interrupt masks, and other miscellaneous functions can be written to or read from the functional I²C register map during the system On state.

14.1.6.1 Run state

If the power up state is successfully completed, the state machine transitions to the run state. In this state, RESETBMCU is released high, and the MCU is expected to boot up and set up specific registers on the PMIC as required during the system boot up process.

The Run mode is intended to be used as the normal mode of operation for the system.

Each regulator has specific registers to control its output voltage, operation mode and/or enable/disable state during the run state.

By default, the VSWx RUN[7:0] register is loaded with the data stored in the OTP VSWx[7:0] bit.

Upon power up, if the switching regulator is part of the power up sequence, the SWx_RUN_MODE[1:0] bits will be loaded as needed by the system:

- When OTP SYNC MODE = 1, default SWx RUN MODE at power up is always set to PWM (0b01)
- When OTP_SYNC_MODE = 0 and OTP_SYNCOUT_EN = 1, default SWx_RUN_MODE at power up is always set to PWM (0b01)
- When OTP_FSS_EN = 1, default SWx_RUN_MODE at power up shall always set to PWM (0b01)
- If none of the above conditions are met, the default value of the SWx_RUN_MODE bits at power up will be set by the OTP_SW_MODE bit.

PF5200

Power management integrated circuit (PMIC) for high performance applications

When OTP_SW_MODE = 1, the default value of the SWx_RUN_MODE bits are set to 0b01 (PWM).

If the switching regulator is not part of the power up sequence, the SWx_RUN_MODE[1:0] bits are loaded with 0b00 (Off mode).

In a typical system, each time the processor boots up (PMIC transitions from Off mode to run state), all output voltage configurations are reset to the default OTP configuration, and the MCU should configure the PMIC to its desired usage in the application.

14.1.7 WD_Reset

When a hard watchdog reset is present, the state machine increments the WD_EVENT_CNT[3:0] counter and compares against the WD_MAX_CNT[3:0] value. If WD_EVENT_CNT[3:0] = WD_MAX_CNT[3:0], the state machine detects a cyclic watchdog failure, the PF5200 powers down the external regulators and proceeds to the fail-safe transition.

If WD_EVENT_CNT[3:0] < WD_MAX_CNT[3:0], the state machine performs a hard WD reset.

A hard WD reset can be generated from either a transition or a WD event initiated by the internal watchdog counter as described in <u>Section 16.9.2 "Watchdog reset behaviors"</u>.

14.1.8 Power down state

During power down state, all regulators are disabled as configured in the power down sequence. The power down sequence is programmable as defined in <u>Section 15.6.2 "Power down sequencing"</u>.

Two types of events may lead to the power down sequence:

- Non faulty turn off events: move directly into LP Off state as soon as power down sequence is finalized.
- Turn off events due to a PMIC fault: move to the fail-safe transition as soon as the power down sequence is finalized.

14.1.9 Fail-safe transition

The fail-safe transition is entered if the PF5200 initiates a turn off event due to a PMIC fault.

If the fail-safe transition is entered, the PF5200 provides four FAIL bits to indicate the source of the failure:

- The PU FAIL is set to 1 when the device shuts down due to a power up failure
- The WD_FAIL is set to 1 when the device shuts down due to a watchdog event counter max out
- The REG_FAIL is set to 1 when the device shuts down due to a regulator failure (fault counter maxed out or fault timer expired)
- The TSD FAIL is set to 1 when the device shuts down due to a thermal shutdown

The value of the FAIL bits is retained as long as VIN > UVDET.

The MCU can read the FAIL bits during the system On state in order to obtain information about the previous failure and can clear them by writing a 1. After clearing the FAIL bit, the state machine is able to power up successfully after such failure.

In the PF5200, when the state machine enters the fail-safe transition, a fail-safe counter is compared and increased. If the FS_CNT[3:0] reaches the maximum count, the device can be programmed to move directly to the fail-safe state to prevent a cyclic failure from happening.

14.1.10 Fail-safe state (PF5200 ASIL B only)

The fail-safe state works as a safety lock-down upon a critical device/system failure. It is reached when the FS_CNT [3:0] = OTP_FS_MAX_CNT [3:0].

PF5200

Power management integrated circuit (PMIC) for high performance applications

A bit is provided to enable or disable the device to enter the fail-safe state upon a cyclic failure. When the OTP_FS_BYPASS = 1, the fail-safe bypass operation is enabled and the device always move to the LP_Off state, regardless of the value of the FS_CNT[3:0]. If the OTP_FS_BYPASS = 0, the fail-safe bypass is disabled, and the device moves to the fail-safe state when the proper condition is met.

The maximum number of times the device can pass through the fail-safe transition continuously prior to moving to a fail state is programmed by the OTP_FS_MAX_CNT[3:0] bits. If the OTP_FS_MAX_CNT[3:0] = 0x00, the device moves into the fail-safe state as soon as it fails for the very first time.

The device can exit the fail-safe state only after a power cycle (VIN crossing UVDET) event is present.

To avoid reaching the fail-safe state due to isolated fail-safe transition events, the FS_CNT [3:0] is gradually decreased based on a fail-safe OK timer. The OTP_FS_OK_TIMER[2:0] bits select the default time configuration for the fail-safe OK timer between 1 to 60 min.

Table 13. Fail-safe OK timer configuration

OTP_FS_OK_TIMER[2:0]	FS_CNT decrease period (min)
000	1
001	5
010	10
011	15
100	20
101	30
110	45
111	60

When the fail-safe OK timer reaches the configured time during the system On state, the state machine decreases the FS_CNT[3:0] bits by one and starts a new count until the FS_CNT[3:0] is 0x00. The FS_CNT[3:0] may be manually cleared during the system on state if the system wants to control this counter manually.

Power management integrated circuit (PMIC) for high performance applications

15 General device operation

15.1 UVDET

UVDET works as the main operation threshold for the PF5200. Crossing UVDET on the rising edge is a mandatory condition for OTP fuses to be loaded into the mirror registers and allows the main PF5200 operation.

If VIN is below the UVDET threshold, the device remains in an unpowered state. A 200 mV hysteresis is implemented on the UVDET comparator to set the falling threshold.

Table 14. UVDET threshold

Symbol	Parameter	Min	Тур	Max	Unit
UVDET	Rising UVDET	2.7	2.8	2.9	V
UVDET	Falling UVDET	2.5	2.6	2.7	V

15.2 VIN OVLO condition

The VIN_OVLO circuit monitors the main input supply of the PF5200. When this block is enabled, the PF5200 monitors its input voltage and can be programmed to react to an overvoltage in two ways:

- When the VIN_OVLO_SDWN = 0, the VIN_OVLO event triggers an OVLO interrupt but does not turn off the
 device
- When the VIN_OVLO_SDWN = 1, the VIN_OVLO event initiates a power down sequence

When the VIN_OVLO_EN = 0, the OVLO monitor is disabled and when the VIN_OVLO_EN = 1, the OVLO monitor is enabled. The default configuration of the VIN_OVLO_EN bit is set by the OTP_VIN_OVLO_EN bit in OTP. Likewise, the default value of the VIN_OVLO_SDWN bit is set by the OTP_VIN_OVLO_SDWN upon power up.

During a power up transition, if the OTP_VIN_OVLO_SDWN = 0 the device allows the external regulators to come up and the PF5200 announces the VIN_OVLO condition through an interrupt. If the OTP_VIN_OVLO_SDWN = 1, the device stops the power up sequence and returns to the corresponding Off mode.

VIN_OVLO debounce time is 10 µs.

Table 15. VIN_OVLO specifications

Symbol	Parameter	Min	Тур	Max	Unit
VIN_OVLO	VIN overvoltage lockout rising [1]	5.55	5.8	6.0	V
VIN_OVLO_HYS	VIN overvoltage lockout hysteresis [1]	_	_	200	mV

^[1] Operating the device above the maximum VIN = 5.5 V for extended period of time may degrade and cause permanent damage to the device.

15.3 IC startup timing with PWRON pulled up to VIN

The PF5200 features a fast internal core power up sequence to fulfill system power up timings of 5.0 ms or less, from power application until MCU is out of reset. Such requirement needs a maximum ramp up time of 1.5 ms for VIN to cross the UVDET threshold in the rising edge.

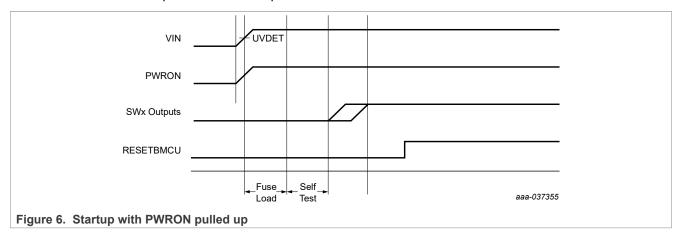
A maximum core biasing time of 1.5 ms from VIN crossing to UVDET until the beginning of the power up sequence is ensured to allow up to 1.5 ms time frame for the voltage regulators power up sequence.

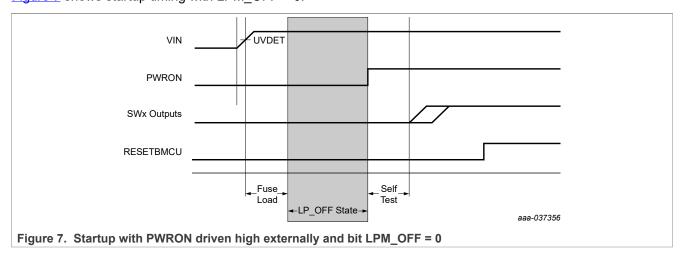
Timing for the external regulators to start up is programmed by default in the OTP fuses.

PF5200

Power management integrated circuit (PMIC) for high performance applications

The 5.0 ms power up timing requirement is only applicable when the PWRON pin operates in level sensitive mode OTP_PWRON_MODE = 0, however turn on timing is expected to be the same for both level or edge sensitive modes after the power on event is present.




Table 16. Startup timing requirements (PWRON pulled up)

Symbol	Parameter	Min	Тур	Max	Unit
t_{stest_done}	Duration of fuse load + self test	_	_	1.5	ms

15.4 IC startup timing with PWRON pulled low during VIN application

It is possible that PWRON is held low when VIN is applied. By default, LPM_OFF bit is reset to 0 upon crossing UVDET, therefore the PF5200 remains in the LP_Off state as described in <u>Section 14.1.2 "LP_Off state"</u>. In this scenario, the quiescent current in the LP_Off state is kept to a minimum. When PWRON goes high with LPM_OFF = 0, the PMIC startup is expected to take longer, since it has to enable most of the internal circuits and perform the self-test before starting a power up sequence.

Figure 7 shows startup timing with LPM OFF = 0.

Power management integrated circuit (PMIC) for high performance applications

15.5 Power up

15.5.1 Power up events

Upon a power cycle (VIN > UVDET), the LPM_OFF bit is reset to 0, therefore the device moves to the LP_Off state by default. The actual value of the LPM_OFF bit can be changed during the Run mode and is maintained until VIN crosses the UVDET threshold.

In either one of the Off modes, the PF5200 can be enabled by the following power up events:

- 1. When OTP PWRON MODE = 0, PWRON pin is pulled high.
- 2. When OTP_PWRON_MODE = 1, PWRON pin experiences a high to low transition and remains low for as long as the PWRON_DBNC timer.

A power up event is valid only if:

- VIN > UVDET
- VIN < VIN_OVLO (unless the OVLO is disabled or OTP_VIN_OVLO_SDWN = 0)
- T₁ < thermal shutdown threshold
- TRIM_NOK = 0 && OTP_NOK = 0 && STEST_NOK = 0

15.5.2 Power up sequencing

The power up sequencer controls the time and order in which the voltage regulators and other controlling I/O are enabled when going from the Off mode into the run state.

The OTP SEQ TBASE[1:0] bits set the default time base for the power up and power down sequencer.

The SEQ_TBASE[1:0] bits can be modified during the system On state in order to change the power down sequence.

Table 17. Power up time base configuration

	Functional bits SEQ_TBASE[1:0]	Sequencer time base (µs)
00	00	30
01	01	120
10	10	250
11	11	500

The power up sequence may include any of the following:

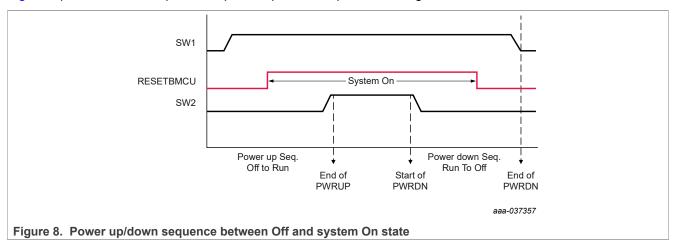
- · Switching regulators
- · PGOOD pin if programmed as a GPO
- RESETBMCU

The default sequence slot for each one of these signals is programmed via the OTP configuration registers. They can be modified in the functional I²C register map to change the order in which the sequencer behaves during the power down sequence.

The x_SEQ[7:0] bits set the regulator/pin sequence from 0 to 254. Sequence code 0x00 indicates that the particular output is not part of the startup sequence and remains in OFF (in case of a regulator) or remains low/disabled (in case PGOOD pin used as a GPO).

Power management integrated circuit (PMIC) for high performance applications

Table 18. Power up sequence configuration


OTP bits OTP_SWx_SEQ[7:0]/ OTP_PGOOD_SEQ[7:0]/ OTP_RESETBMCU_SEQ[7:0]	Functional bits SWx_SEQ[7:0]/ PGOOD_SEQ[7:0]/ RESETBMCU_SEQ[7:0]	Sequence slot	Startup time (µs)
0000000	00000000	Off	Off
00000001	00000001	0	SLOT0 (right after PWRON event is valid)
0000010	0000010	1	SEQ_TBASE x SLOT1
11111111	11111111	254	SEQ_TBASE x SLOT254

If RESETBMCU is not programmed in the OTP sequence, it will be enabled by default after the last regulator programmed in the power up sequence.

When the _SEQ[7:0] bits of all regulators and PGOOD used as a GPO are set to 0x00 (OFF) and a power on event is present, the device moves to the run state in slave mode. In this mode, the device is enabled without any voltage regulator or GPO enabled. If the RESETBMCU is not programed in a power up sequence slot, it is released when the device enters the run state.

The slave mode is a special case of the power up sequence to address the scenario where the PF5200 is working as a slave PMIC, and supplies are meant to be enabled by the MCU during the system operation. In this scenario, if RESETBMCU is used, it is connected to the master RESETBMCU pin.

Figure 8 provides an example of the power up/down sequence coming from the Off modes.

15.6 Power down

15.6.1 Turn off events

Turn off events may be requested by the MCU (non-PMIC fault related) or due to a critical failure of the PMIC (hard fault condition).

The following are considered non-PMIC failure turn off events:

- 1. When OTP_PWRON_MODE = 0, the device starts a power down sequence when the PWRON pin is pulled low.
- 2. When OTP_PWRON_MODE = 1, the device starts a power down sequence when the PWRON pin sees a transition from high to low and remains low for longer than TRESET.

PF5200

Power management integrated circuit (PMIC) for high performance applications

- 3. When bit PMIC_OFF is set to 1, the device starts a 500 µs shutdown timer. When the shutdown timer is started, the PF5200 sets the SDWN_I interrupt. At this point, the MCU can read the interrupt and decide whether to continue with the turn off event or stop it in case it was sent by mistake. If the SDWN_I bit is cleared before the 500 µs shutdown timer is expired, the shutdown request is canceled and the shutdown timer is reset; otherwise, if the shutdown timer is expired, the PF5200 starts a power down sequence.
 - The PMIC OFF bit self-clears after SDWN I flag is cleared.
- 4. When VIN_OVLO_EN = 1 and VIN_OVLO_SDWN = 1, and a VIN_OVLO event is present.

Turn off events due to a hard fault condition:

- 1. If an OV, UV or ILIM condition is present long enough for the fault timer to expire.
- 2. In the event that an OV, UV or ILIM condition appears and clears cyclically, and the FAULT_CNT[3:0] = FAULT_MAX_CNT[3:0].
- 3. If the watchdog fail counter is overflown, that is WD_EVENT_CNT = WD_MAX_CNT.
- 4. When Tj crosses the thermal shutdown threshold as the temperature rises.

When the PF5200 experiences a turn off event due to a hard fault condition, the device pass through the fail-safe transition after regulators have been powered down.

15.6.2 Power down sequencing

15.6.2.1 Sequential power down

When the device is set to the sequential power down, it uses the same _SEQ[7:0] registers as the power up sequence to power down in reverse order.

All regulators with the _SEQ[7:0] bits set to 0x00, power down immediately and the remaining regulators power down one OTP_SEQ_TBASE[1:0] delay after, in reverse order as defined in the _SEQ[7:0] bits.

If PGOOD pin is used as a GPO, it is de-asserted as part of the power down sequence as indicated by the PGOOD SEQ[7:0] bits.

If the MCU requires a different power down sequence, it can change the values of the SEQ_TBASE[1:0] and the SEQ[7:0] bits during the system On state.

When the state machine passes through any of the Off modes, the contents of the SEQ_TBASE[1:0] and _SEQ[7:0] bits are reloaded with the corresponding mirror register (OTP) values before it starts the next power up sequence.

15.6.2.2 Power down delay

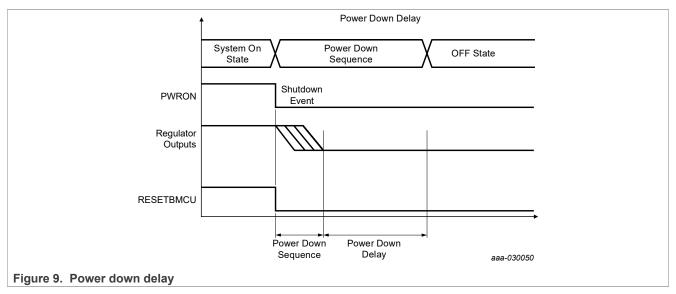

After a power down sequence is started, the PWRON pin shall be masked until the sequence is finished and the programmable power down delay is reached. The device can power up again if a power up event is present. The power down delay time can be programmed on an OTP via the OTP_PD_SEQ_DLY[1:0] bits.

Table 19. Power down delay selection

OTP_PD_SEQ_DLY[1:0]	Delay after power down sequence	
00	No delay	
01	1.5 ms	
10	5.0 ms	
11	10 ms	

PF5200

Power management integrated circuit (PMIC) for high performance applications

The default value of the OTP_PD_SEQ_DLY[1:0] bits on an unprogrammed OTP device shall be 00.

15.7 Fault detection

Three types of fault events are monitored per regulator: UV, OV and ILIM. Faults are monitored during power up sequence, run, and WD reset states.

A fault event is notified in the interrupt registers. To get this information, the MCU shall read the interruption registers. The fault configuration registers are reset to their default value after the power up sequences, and system must configure them as required during the boot-up process via I²C commands.

For each type of fault, there is an I²C bit that is used to select whether the regulator is kept enabled or disabled when the corresponding regulator experience a fault event.

SWx ILIM STATE

- 0 = regulator disables upon an ILIM fault event
- 1 = regulator remains on upon an ILIM fault event

SWx_OV_STATE

- 0 = regulator disables upon an OV fault event
- 1 = regulator remains on upon an OV fault event

SWx UV STATE

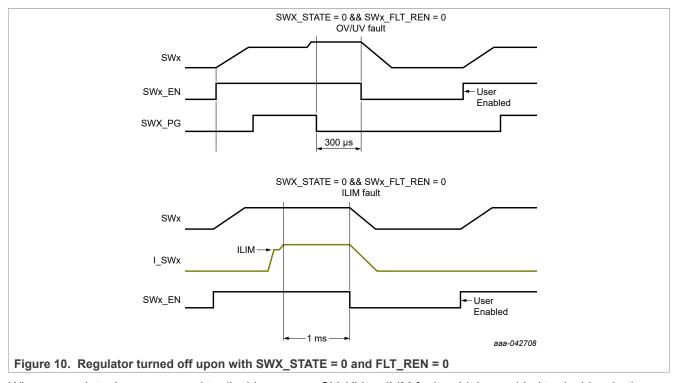
- 0 = regulator disables upon an UV fault event
- 1 = regulator remains on upon an UV fault event

The following table lists the functional bits associated with enabling/disabling the external regulators when they experience a fault.

Table 20. Regulator control during fault event bits

· ·		į	Bit to disable the regulator during overvoltage
SWx	SWx_ILIM_STATE	SWx_UV_STATE	SWx_OV_STATE

ILIM faults are debounced for 1.0 ms before they can be detected as a fault condition. If the regulator is programed to disable upon an ILIM condition, the regulator turns off as soon as the ILIM condition is detected.


PF5200

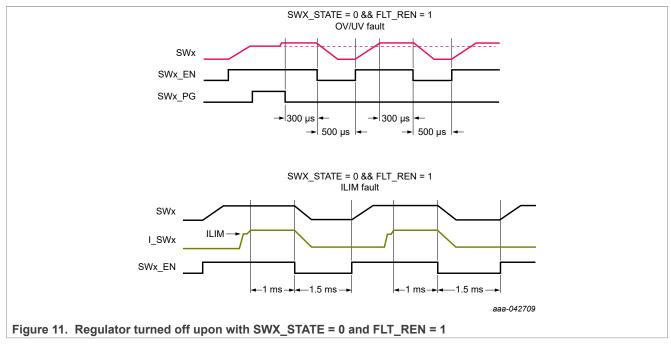
All information provided in this document is subject to legal disclaimers

© 2024 NXP B.V. All rights reserved.

Power management integrated circuit (PMIC) for high performance applications

OV/UV faults are debounced for defined filter time (UV_DB, OV_DB), before they are detected as a fault condition. If the regulator is programmed to disable upon an OV or UV, the regulator will turn off if the fault persist for longer than 300 µs after the OV/UV fault has been detected.

When a regulator is programmed to disable upon an OV, UV, or ILIM fault, a bit is provided to decide whether a regulator can return to its previous configuration or remain disabled when the fault condition is cleared.


SWx_FLT_REN

- 0 = regulator remains disabled after the fault condition is cleared or no longer present
- 1 = regulator returns to its previous state if fault condition is cleared

If a regulator is programmed to remain disabled after clearing the fault condition, the MCU can turn it back ON during the system On state by toggling OFF and ON the corresponding mode/enable bits (SWx_RUN_MODE).

When the bit SWx_FLT_REN = 1, if a regulator is programmed to turn off upon an OV, UV condition, the regulator returns to its previous state $500 \, \mu s$ after the fault condition is cleared. If a regulator is programmed to turn off upon an ILIM, the regulator return to its previous state 1.5 ms after the fault condition is cleared.

Power management integrated circuit (PMIC) for high performance applications

To avoid fault cycling, a global fault counter is provided. Each time any of the external regulators encounter a fault event, the PF5200 compares the value of the FAULT_CNT[3:0] against the FAULT_MAX_CNT, and if it not equal, it increments the FAULT_CNT[3:0] and proceeds with the fault protection mechanism.

The processor is expected to read the counter value and reset it when the faults have been cleared and the device returns to a normal operation. If the processor does not reset the fault counter and it equals the FAULT_MAX_CNT[3:0] value, the state machine initiates a power down sequence.

The default value of the FAULT_MAX_CNT[3:0] is loaded from the OTP_FAULT_MAX_CNT[3:0] bits during the power up sequence.

When the FAULT_MAX_CNT[3:0] is set to 0x00, the system disables the turn-off events due to a fault counter maxing out.

When a regulator experiences a fault event, a fault timer is started. While this timer is in progress, the expectation is that the processor takes actions to clear the fault. For example, it could reduce its load in the event of a current limit fault, or turn off the regulator in the event of an overvoltage fault.

If the fault clears before the timer expires, the state machine resumes the normal operation, and the fault timer gets reset. If the fault does not clear before the timer expires, the fault counter (FAULT_CNT) is incremented.

- If FAULT_CNT = FAULT_MAX_CNT, a power down sequence is initiated.
- If FAULT_CNT < FAULT_MAX_CNT, regulator behaves depending on OTP_SWx_xxBYPASS and SWx_xx_STATE configuration.

The default value of the fault timer is set by the OTP_TIMER_FAULT[3:0], however the duration of the fault timer can be changed during the system On state by modifying the TIMER_FAULT[3:0] bits in the I²C registers.

Table 21. Fault timer configuration

OTP bits OTP_TIMER_FAULT [3:0]	Functional bits TIMER_FAULT [3:0]	Timer value ^[1] (ms)
0000	0000	1
0001	0001	2
0010	0010	4

PF5200

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved

Power management integrated circuit (PMIC) for high performance applications

Table 21. Fault timer configuration...continued

OTP bits OTP_TIMER_FAULT [3:0]	Functional bits TIMER_FAULT [3:0]	Timer value ^[1] (ms)	
0011	0011	8	
0100	0100	16	
0101	0101	32	
0110	0110	64	
0111	0111	128	
1000	1000	256	
1001	1001	512	
1010	1010	1024	
1011	1011	2056	
1100	1100	Reserved	
1101	1101	Reserved	
1110	1110	Reserved	
1111	1111	Disabled	

^[1] If OTP FAULT MAX CNT is disabled, Timer value is considered infinite.

Each voltage regulator has a dedicated I²C bit that is used to bypass the fault detection mechanism for each specific fault.

SWx_ILIM_BYPASS

- 0 = ILIM protection enabled
- 1 = ILIM fault bypassed

SWx OV BYPASS

- 0 = OV protection enabled
- 1 = OV fault bypassed

SWx_UV_BYPASS

- 0 = UV protection enabled
- 1 = UV fault bypassed

Table 22. Fault bypass bits

Regulator	Bit to bypass a current limit	Bit to bypass an undervoltage	Bit to bypass an overvoltage
SWx	SWx_ILIM_BYPASS	SWx_UV_BYPASS	SWx_OV_BYPASS

The default value of the OV_BYPASS, UV_BYPASS and ILIM_BYPASS bits upon power up can be configured by their corresponding OTP bits.

Bypassing the fault detection prevents the specific fault from starting any of the protective mechanism:

- · Increment the counter
- · Start the fault timer
- Disable the regulator if the corresponding _STATE bit is 0
- OV/UV condition asserting the PGOOD pin low

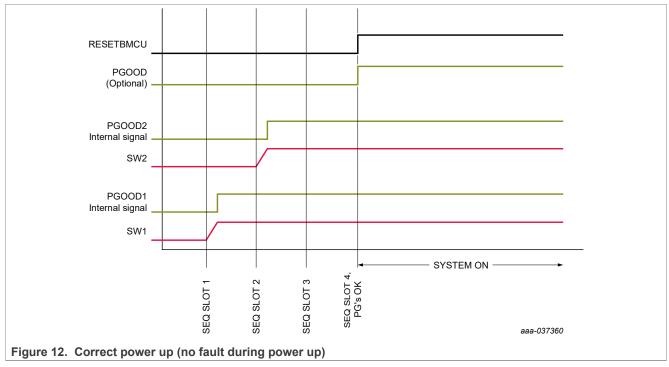
Even if ILIM fault detection is bypassed, current limitation is always protecting the circuit.

PF5200

All information provided in this document is subject to legal disclaimers.

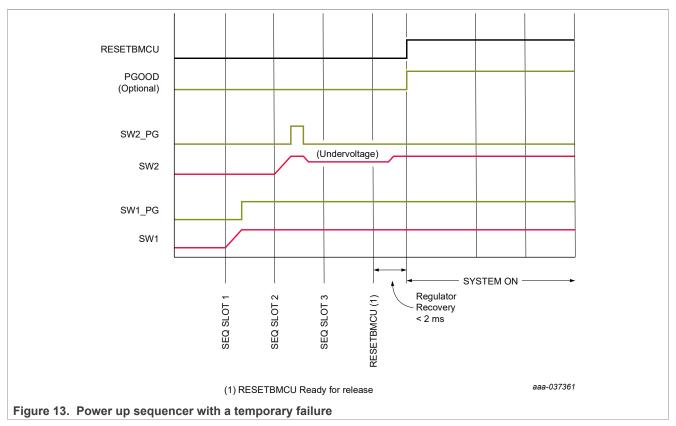
© 2024 NXP B.V. All rights reserved.

Power management integrated circuit (PMIC) for high performance applications


15.7.1 Fault monitoring during power up state

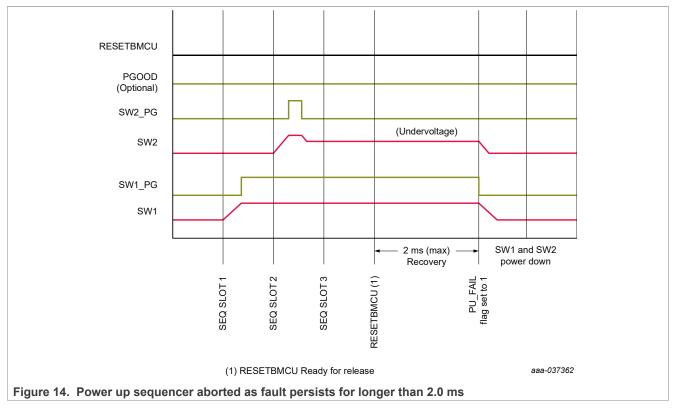
An OTP bit is provided to select whether the output of the switching regulators is verified during the power up sequence and used as a gating condition to release the RESETBMCU or not.

- When OTP_PG_CHECK = 0, the output voltage of the regulators is not checked during the power up sequence and power good indication is not required to de-assert the RESETBMCU. In this scenario, the OV/ UV monitors are masked until RESETBMCU is released; after this event, all regulators may start checking for faults after their corresponding blanking period.
- When OTP_PG_CHECK = 1, RESETBMCU is released only when all regulators assigned to PGOOD are in normal range at the timing of RESETBMCU release. OV/UV fault flag ignore any OV/UV condition before RESETBMCU release.


When OTP_PG_CHECK = 1, OV and UV faults during the power up sequence are reported based on the internal PG (Power Good) signals of the corresponding external regulator. The PGOOD pin can be used as an external indicator of an OV/UV failure when the RESETBMCU is ready to be de-asserted and it has been configured in the PGOOD mode. See <u>Section 15.9.3 "PGOOD"</u> for details on PGOOD pin operation and configuration.

Regardless of the PGOOD pin configured as a power good indicator or not, the PF5200 masks the detection of an OV/UV failure until RESETBMCU is ready to be released, at this point the device checks for any OV/UV condition for the regulators turned on so far. If all regulators powered up before or in the same sequence slot than RESETBMCU are in regulation, RESETBMCU is de-asserted and the power up sequence can continue as shown in Figure 12.

If RESETBMCU is ready to be released while any of the regulators is out of regulation, RESETBMCU is not de-asserted and the power up sequence is stopped for up to 2.0 ms. If the fault is cleared and all internal PG signals are asserted within the 2.0 ms timer, RESETBMCU is de-asserted and the power up sequence continues where it stopped as shown in Figure 13.


Power management integrated circuit (PMIC) for high performance applications

If the faulty condition is not cleared within the 2.0 ms timer, the power up sequence is aborted and the PF5200 turns off all voltage regulators enabled so far as shown in <u>Figure 14</u>.

If RESETBMCU is not released for 2 ms due to UV or OV, then PU_FAIL flag is set to 1.

Power management integrated circuit (PMIC) for high performance applications

Supplies enabled after RESETBMCU are checked for OV, UV and ILIM faults after each of them are enabled. If an OV, UV or ILIM condition is present, the PF5200 starts a fault detection and protection mechanism as described in Section 15.7 "Fault detection". At this point, the MCU should be able to read the interrupt and react upon a fault event as defined by the system.

When OTP_PG_CHECK=1, If PGOOD is used as a GPO, it may be released at any time in the power up sequence as long as the RESETBMCU is released after one or more of the SW regulators.

If a regulator fault occurs after RESETBMCU is de-asserted but before the power up sequence is finalized, the power up sequences continue to turn on the remaining regulators as configured, even if a fault detection mechanism is active on an earlier regulator.

15.8 Interrupt management

The MCU is notified of any interrupt through the various interrupt registers.

The interrupt registers are composed by three types of bits to help manage all the interrupt requests in the PF5200:

- The interrupt latch XXXX_I: this bit is set when the corresponding interrupt event occurs. It can be read in run mode, and is cleared by writing a 1 to the bit.
- The sense bit XXXX_S: if available, the sense bit provides the actual status of the signal triggering the interrupt.

Interrupts are stored in two levels on the interrupts registers. At first level, the SYS INT register provides information about the Interrupt register that originated the interrupt event.

The corresponding SYS INT bits is set with any of the interrupt bits of the respective interrupt registers.

- STATUS1_I: this bit is set when the interrupt is generated within the INT STATUS1 register
- STATUS2_I: this bit is set when the interrupt is generated within the INT STATUS2 register

PF5200

Power management integrated circuit (PMIC) for high performance applications

- MODE_I: this bit is set when the interrupt is generated within the SW MODE INT register
- ILIM_I: this bit is set when the interrupt is generated within any of the SW ILIM INT register
- UV I: this bit is set when the interrupt is generated within any of the SW UV INT
- OV_I: this bit is set when the interrupt is generated within any of the SW OV register
- PWRON I: this bit is set when the interrupt is generated within the PWRON INT register
- EWARN_I: is set when an early warning event occurs to indicate an imminent shutdown

The SYS INT bits are set by any of the second level interrupt bits that have not been masked in their corresponding mask registers. When the second level interrupt bit is cleared, the corresponding first level interrupt bit on the SYS INT register will be cleared automatically.

After the first level interrupts bit is set, it will be de-asserted only when all the unmasked second level interrupts are cleared and thus all the first level interrupts are cleared as well.

At second level the remaining registers provide the exact source for the interrupt event.

Table 23 shows a summary of the interrupt latch, mask and sense pins available on the PF5200.

Table 23. Interrupt registers

Register name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
INT STATUS1	SDWN_I	FREQ_RDY_I	CRC_I	PWRUP_I	PWRDN_I	_	PGOOD_I	VIN_OVLO_I
INT MASK1	SDWN_M	FREQ_RDY_M	CRC_M	PWRUP_M	PWRDN_M	=	PGOOD_M	VIN_OVLO_M
INT SENSE1	=	=	=	=	=	=	PGOOD_S	VIN_OVLO_S
THERM INT	_	FSYNC_FLT_I	THERM_155_I	THERM_140_I	THERM_125_I	THERM_110_I	THERM_95_I	_
THERM MASK	_	FSYNC_FLT_M	THERM_155_M	THERM_140_M	THERM_125_M	THERM_110_M	THERM_95_M	_
THERM SENSE	_	FSYNC_FLT_S	THERM_155_S	THERM_140_S	THERM_125_S	THERM_110_S	THERM_95_S	_
SW MODE INT	_	-	_	_	=	=	SW2_MODE_I	SW1_MODE_I
SW MODE MASK	-	_	_	_	_	-	SW2_MODE_M	SW1_MODE_M
SW ILIM INT	_	=	=	=	_	_	SW2_ILIM_I	SW1_ILIM_I
SW ILIM MASK	_	_	_	_	_	-	SW2_ILIM_M	SW1_ILIM_M
SW ILIM SENSE	_	-	_	_	=	=	SW2_ILIM_S	SW1_ILIM_S
SW UV INT	_	_	_	_	=	=	SW2_UV_I	SW1_UV_I
SW UV MASK	_	-	_	_	_	=	SW2_UV_M	SW1_UV_M
SW UV SENSE	_	_	=	_	_	-	SW2_UV_S	SW1_UV_S
SW OV INT	=	=	=	=	=	=	SW2_OV_I	SW1_OV_I
SW OV MASK	_	=	=	=	=	_	SW2_OV_M	SW1_OV_M
SW OV SENSE	_	-	_	_	_	=	SW2_OV_S	SW1_OV_S
PWRON INT	BGMON_I	PWRON_8S_I	PWRON_4S_I	PRON_3S_I	PWRON_2S_I	PWRON_1S_I	PWRON_REL_I	PWRON_PUSH_I
PWRON MASK	BGMON_M	PWRON_8S_M	PWRON_4S_M	PRON_3S_M	PWRON_2S_M	PWRON_1S_M	PWRON_REL_M	PWRON_PUSH_M
PWRON SENSE	BGMON_S	=	_	_	=	-	_	PWRON_S
SYS INT	EWARN_I	PWRON_I	OV_I	UV_I	ILIM_I	MODE_I	STATUS2_I	STATUS1_I

15.9 I/O interface pins

The PF5200 PMIC is fully programmable via the I²C interface. Additional communication between MCU, PF5200 and other companion PMIC is provided by direct logic interfacing including INTB, RESETBMCU, PGOOD, among other pins.

Power management integrated circuit (PMIC) for high performance applications

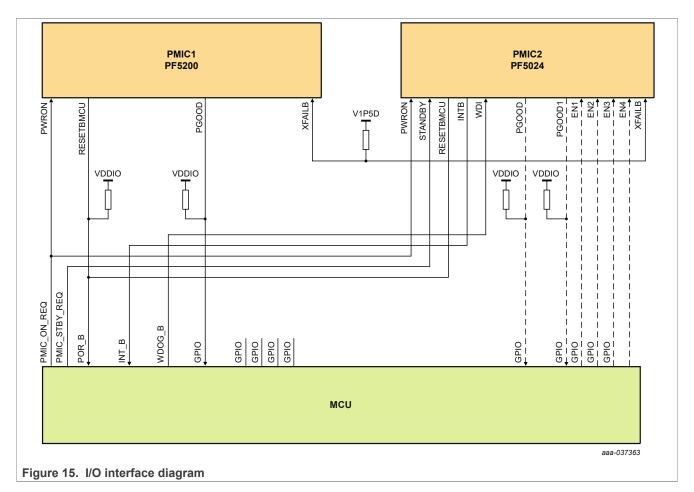


Table 24. I/O electrical specifications

Symbol	Parameter	Min	Тур	Max	Unit
PWRON_V _{IL}	PWRON low input voltage	_	_	0.4	V
PWRON_V _{IH}	PWRON high input voltage	1.4	_	_	V
RESETBMCU_V _{OL}	RESETBMCU low output voltage -2.0 mA load current	0	_	0.4	V
PGOOD_V _{OL}	PGOOD low output voltage -2.0 mA load current	0	_	0.4	V
TBBEN_V _{IL}	TBBEN low input voltage	_	_	0.4	V
TBBEN_V _{IH}	TBBEN high input voltage	1.4	_	_	V
R _{TBBEN_PD}	TBBEN internal pull-down resistance	0.475	1.0	_	ΜΩ
XFAILB_V _{IL}	XFAILB low input voltage	_	_	0.4	V
XFAILB_V _{IH}	XFAILB high input voltage	1.4	_	_	V
XFAILB_V _{OL}	XFAILB low output voltage -2.0 mA load current	0	_	0.4	V
SCL_V _{IL}	SCL low input voltage	_	_	0.3*VDDIO	V
SCL_V _{IH}	SCL high input voltage	0.7*VDDIO	_	_	V
SDA_V _{IL}	SDA low input voltage	_	_	0.3*VDDIO	V
SDA_V _{IH}	SDA high input voltage	0.7*VDDIO	_	_	V
SDA_V _{OL}	SDA low output voltage -20 mA load current	0	_	0.4	V

Power management integrated circuit (PMIC) for high performance applications

15.9.1 PWRON

PWRON is an input signal to the IC that acts as a power up event signal in the PF5200.

The PWRON pin has two modes of operation as programed by the OTP PWRON MODE bit.

When OTP_PWRON_MODE = 0, the PWRON pin operates in level sensitive mode. In this mode, the device is in the corresponding off mode when the PWRON pin is pulled low. Pulling the PWRON pin high is a necessary condition to generate a power on event.

PWRON may be pulled up to VIN with an external 10 k Ω resistor if device is intended to come up automatically with VIN application. See Section 15.5 "Power up" for details on power up requirements.

When OTP_PWRON_MODE = 1, the PWRON pin operates in edge sensitive mode. In this mode, PWRON is used as an input from a push button connected to the PMIC.

When the switch is not pressed, the PWRON pin is pulled up to VIN externally through a 10 k Ω resistor. When the switch is pressed, the PWRON pin should be shorted to ground. The PWRON_S bit is low whenever the PWRON pin is at logic 0 and is high whenever the PWRON pin is at logic 1.

The PWRON pin has a programmable debounce on the rising and falling edges as shown in Table 25.

Table 25. PWRON debounce configuration in edge detection mode

Bits	Value	Falling edge debounce (ms)	Rising edge debounce (ms)
PWRON_DBNC[1:0]	00	32	32
PWRON_DBNC[1:0]	01	32	32
PWRON_DBNC[1:0]	10	125	32
PWRON_DBNC[1:0]	11	750	32

The default value for the power on debounce is set by the OTP PWRON DBNC[1:0] bits.

Pressing the PWRON switch for longer than the debounce time starts a power on event.

During the system On state, when the PWRON button is pushed (logic 0) for longer than the debounce setting, the PWRON_PUSH_I interrupt is generated. When the PWRON button is released (logic 1) for longer than the debounce setting, the PWRON_REL_I interrupt is generated.

The PWRON_1S_I, PWRON_2S_I, PWRON_3S_I, PWRON_4S_I and PWRON_8S_I interrupts are generated when the PWRON pin is held low for longer than 1, 2, 3, 4 and 8 seconds respectively.

If PWRON_RST_EN = 1, pressing the PWRON for longer than the delay programmed by TRESET[1:0] forces a PMIC reset. A PMIC reset initiates a power down sequence, wait for 30 μs to allow all supplies to discharge and then it powers back up with the default OTP configuration.

If PWRON_RST_EN = 0, the device starts a turn off event after push button is pressed for longer than TRESET[1:0].

Table 26. TRESET configuration

Table 201 Translation		
TRESET[1:0]	Time to reset	
00	2 s	
01	4 s	
10	8 s	
11	16 s	

The default value of the TRESET delay is programmable through the OTP_TRESET[1:0] bits.

Power management integrated circuit (PMIC) for high performance applications

15.9.2 RESETBMCU

RESETBMCU is an open-drain, active low output used to bring the processor (and peripherals) in and out of reset.

The time slot RESETBMCU is de-asserted during the power up sequence is programmed by the OTP_RESETBMCU_SEQ[7:0] bits, and it is a condition to enter the system On state. When OTP_PG_CHECK is set to 1, OTP_RESETBMCU_SEQ[7:0] slot is set after the switchers.

During the system On state, the RESETBMCU is de-asserted (pulled high), and it is asserted (pulled low) as indicated in the power down sequence, when a system power down or reset is initiated.

In the application, RESETBMCU can be pulled up to VDDIO by a 10 k Ω external resistor.

It is also recommended to add a 10 nF bypass capacitor close to the pin to improve the EM immunity performance.

15.9.3 PGOOD

PGOOD is an open drain output programmable as a power good indicator pin or GPO. In the application, PGOOD can be pulled up to VDDIO with a 10 k Ω resistor.

When OTP_PG_ACTIVE = 0, the PGOOD pin is used as a general purpose output.

As a GPO, during the run state, the state of the pin is controlled by the RUN_PG_GPO bit in the functional I²C registers:

- When RUN_PG_GPO = 1, the PGOOD pin is high
- When RUN PG GPO = 0, the PGOOD pin is low

When used as a GPO, the PGOOD pin can be enabled high as part of the power up sequence as programmed by the OTP_SEQ_TBASE[1:0] and the OTP_PGOOD_SEQ[7:0] bits. If enabled as part of the power up sequence, the RUN_PG_GPO bit is loaded with 1, otherwise it is loaded with 0 upon power up.

When OTP_PG_ACTIVE = 1, the PGOOD pin is in Power good (PG) mode and it acts as a PGOOD indicator for the selected output voltages in the PF5200.

There is an individual internal PG monitor for every regulator. Each monitor provides an internal PG signal that can be selected to control the status of the PGOOD pin upon an OV or UV condition when the corresponding SWx_PG_EN bit is set. The status of the PGOOD pin is a logic AND function of the internal PG signals of the selected monitors.

- When the SWx_PG_EN = 1, the corresponding regulator becomes part of the AND function that controls the PGOOD pin.
- When the SWx_PG_EN = 0, the corresponding regulator does not control the status of the PGOOD pin.

The PGOOD pin is pulled low when any of the selected regulator outputs falls above or below the programmed OV/UV thresholds and the corresponding OV/UV interrupt is generated. If the faulty condition is removed, the corresponding OV_S/UV_S bit goes low to indicate the output is back in regulation, however, the interrupt remains latched until it is cleared.

The actual condition causing the interrupt (OV, UV) can be read in the fault interrupt registers. For more details on handling interrupts, see Section 15.8 "Interrupt management".

When a particular regulator is disabled (via OTP, or I²C, or by change in state of PMIC), it no longer controls the PGOOD pin.

In the Off mode and during the power up sequence, the PGOOD pin is held low until RESETBMCU is ready to be released, at this point, the PG monitors are unmasked and the PGOOD pin is released high if all the internal PG monitors are in regulation. In the event that one or more outputs are not in regulation by the time

Power management integrated circuit (PMIC) for high performance applications

RESETBMCU is ready to de-assert, the PGOOD pin is held low and the PF5200 performs the corresponding fault protection mechanism as described in <u>Section 15.7.1 "Fault monitoring during power up state"</u>.

15.9.4 TBBEN

The TBBEN is an input pin provided to allow the user to program the mirror registers in order to operate the device with a custom configuration as well as programming the default values on the OTP fuses.

- When TBBEN pin is pulled low to ground, the device is operating in normal mode.
- When TBBEN pin is pulled high to V1P5D, the device enables the TBB configuration mode.

See Section 18 "OTP/TBB mode" for details on TBB and OTP operation.

When TBBEN pin is pulled high to V1P5D the following conditions apply:

- The device uses a fixed I²C device address (0x08)
- · Disable the watchdog operation and internal watchdog timer
- Disable the CRC and I²C secure write mechanism while no power up event is present (TBB/OTP programming mode).

Disabling the watchdog operation may be required for in-line MCU programming where output voltages are required but watchdog operation should be completely disabled.

15.9.5 XFAILB

XFAILB is a bidirectional pin with an open drain output used to synchronize the power up and power down sequences of two or more PMICs. It should normally be pulled up externally to V1P5D supply.

The OTP_XFAILB_EN bit is used to enable or disable the XFAILB mode of operation.

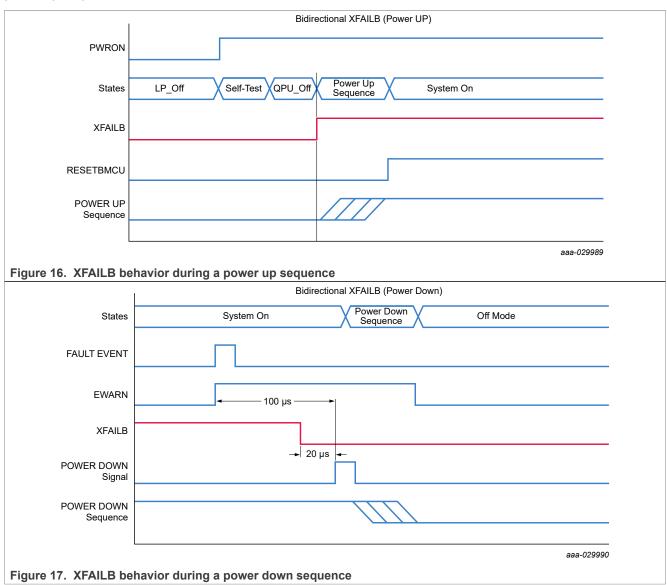
- When OTP XFAILB EN = 0, the XFAILB mode is disabled and any events on this pin are ignored.
- When OTP XFAILB EN = 1, the XFAILB mode is enabled

When the XFAILB mode is enabled, and the PF5200 has a turn off event generated by an internal fault, the XFAILB pin is asserted low 20 µs before starting the power down sequence.

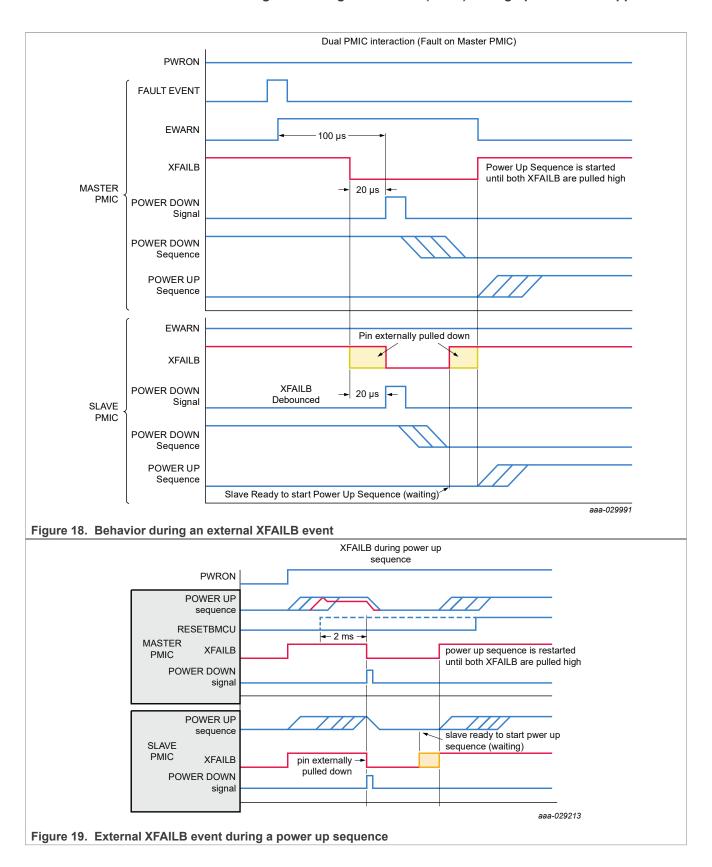
A power down event caused by the following conditions will assert the XFAILB pin:

- · Fault timer expired
- FAULT CNT = FAULT MAX CNT (Regulator fault counter max out)
- WD EVENT CNT = WD MAX CNT (Watchdog event counter max out)
- Power up failure
- Thermal shutdown
- Hard WD event

The XFAILB pin is forced low during the Off mode.


During the system On state, if the XFAILB pin is externally pulled low, it will detect an XFAIL event after a 20 µs debounce. When an XFAIL event is detected, the XFAILB pin is asserted low internally and the device starts a power down sequence.

If a PWRON event is present, the device will start a turn on event and proceed to release the XFAILB pin when its ready to start the power up sequence state. If the XFAILB pin is pulled down externally during the power up event, the PF5200 will stop the power up sequence until the pin is no longer pulled down externally. This will help both PMICs to synchronize the power up sequence allowing it to continue only when both PMICs are ready to initiate the power up sequence.


A hard WD event will set the XFAILB pin 20 µs before it starts its power down sequence. After all regulator outputs have been turned off, the device will release the XFAILB pin internally after a 30 µs delay, proceed to

Power management integrated circuit (PMIC) for high performance applications

load the default OTP configuration and wait for the XFAILB pin to be released externally before it can restart the power up sequence.

Power management integrated circuit (PMIC) for high performance applications

Power management integrated circuit (PMIC) for high performance applications

15.9.6 SDA and SCL (I²C bus)

Communication with the PF5200 is done through I 2 C and it supports high-speed operation mode with up to 3.4 MHz operation. SDA and SCL are pulled up to VDDIO with 1.5 k Ω resistors.

The PF5200 is designed to operate as a slave device during I²C communication. The default I²C device address is set by the OTP I2C ADD[2:0].

Table 27. I²C address configuration

OTP_I2C_ADD[2:0]	Device address
000	0x08
001	0x09
010	0x0A
011	0x0B
100	0x0C
101	0x0D
110	0x0E
111	0x0F

See http://www.nxp.com/documents/user_manual/UM10204.pdf for detailed information on the digital I²C communication protocol implementation.

During an I²C transaction, the communication will latch after the 8th bit sent. If the data sent is not a multiple of 8 bit, any word with less than 8 bits will be ignored. If only 7 bits are sent, no data is written and the logic will not provide an ACK bit to the MCU.

From an IC level, a wrong I²C command can create a system level safety issue. For example, though the MCU may have intended to set a given regulator's output to 1.0 V, it may be erroneously registered as 1.1 V due to noise in the bus.

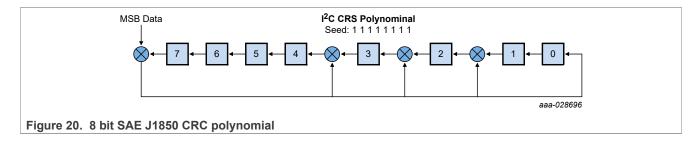
To prevent a wrong I²C configuration, various protective mechanisms are implemented.

See the application note AN13107 (PF series PMIC I²C-bus communication overview) for detailed I²C description on this product.

15.9.6.1 I²C CRC verification

When this feature is enabled, a selectable CRC verification is performed on each I²C transaction.

- When OTP_I2C_CRC_EN = 0, the CRC verification mechanism is disabled.
- When OTP I2C CRC EN = 1, the CRC verification mechanism is enabled.


After each I²C transaction, the device calculates the corresponding CRC byte to ensure the configuration command has not been corrupted.

When a CRC fault is detected, the PF5200 ignores the erroneous configuration command and triggers a CRC_I interrupt, provided the interrupt is not masked.

The PF5200 implements a CRC-8-SAE, per the SAE J1850 specification.

- Polynomial = 0x11D
- Initial value = 0xFF

Power management integrated circuit (PMIC) for high performance applications

15.9.6.2 I²C secure write

A secure write mechanism is implemented for specific registers critical to the functional safety of the device.

- When OTP I2C SECURE EN = 0, the secure write is disabled.
- When OTP_I2C_ SECURE_EN = 1, the secure write is enabled.

When the secure write is enabled, a specific sequence must be followed in order to grant writing access on the corresponding secure register.

Secure write sequence is as follows:

- · MCU sends command to modify the secure registers
- PMIC generates a random code in the RANDOM GEN register
- MCU reads the random code from the RANDOM GEN register and writes it back on the RANDOM CHK register

The PMIC compares the RANDOM CHK against the RANDOM GEN register:

- If RANDOM_CHK [7:0] = RANDOM_GEN[7:0], the device applies the configuration on the corresponding secure register, and self-clears both the RANDOM GEN and RANDOM CHK registers.
- If RANDOM_CHK[7:0] different from RANDOM_GEN[7:0], the device ignores the configuration command and self-clears both the RANDOM GEN and RANDOM CHK registers.

In the event the MCU sends any other command instead of providing a value for the RANDOM CHK register, the state machine cancels the ongoing secure write transaction and performs the new I²C command.

In the event the MCU does not provide a value for the RANDOM CHK register, the I²C transaction times out 10 ms after the RANDOM GEN code is generated, and device is ready for a new transaction.

Table 28. Secure bits

Register	Bit	Description
ABIST OV1	AB_SWx_OV	Writing a 1 to this flag to clear the ABIST fault notification
ABIST UV1	AB_SWx_UV	Writing a 1 to this flag to clear the ABIST fault notification
ABIST RUN	AB_RUN	Writing a 1 starts an ABIST on demand
ABIST PGOOD MON	AB_PGOOD_MON	Writing a 1 to this flag to clears ABIST fault notification
CTRL1	TMP_MON_EN	Writing a 0 disables the thermal monitor, preventing the thermal interrupts and thermal shutdown event from being detected
CTRL1	VIN_OVLO_EN	Writing a 0 disables the VIN overvoltage lockout monitor completely
CTRL1	VIN_OVLO_SDWN	Writing a 0 disables a shutdown event upon a VIN overvoltage condition (only interrupts are provided)
CTRL1	WD_EN	Writing a 0 disables the watchdog counter block
CTRL1	I2C_SECURE_EN	Writing a 0 disables de I ² C secure write mode
VMONENx	SWxVMON_EN	Writing a 0 disables the OV/UV monitor for SWx

Power management integrated circuit (PMIC) for high performance applications

16 Functional blocks

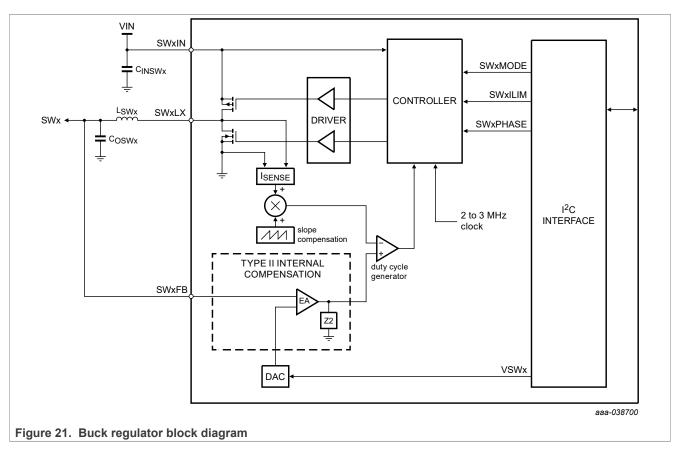
16.1 Analog core and internal voltage references

All regulators use the main bandgap (BG1) as the reference for the output voltage generations, this bandgap is also used as reference for the internal analog core and digital core supplies. The performance of the regulators is directly dependent on the performance of the bandgap.

No external DC loading is allowed on V1P5D. V1P5D is kept powered as long as there is a valid supply and it may be used as a reference voltage for the VDDOTP and TBBEN pins during system power on.

In applications where two or more PMICs supply a system, the V1P5D is used to pull up the XFAILB pin to achieve proper power up and power down synchronization during system operation.

A second bandgap is provided as the reference for all the monitoring circuits. This architecture allows the PF5200 to provide a reliable way to detect not only single point but also latent faults in order to meet the metrics required by an ASIL B level application.


Table 29. Internal supplies electrical characteristics

Symbol	Parameter	Min	Тур	Max	Unit
V _{1P5}	V1P5D output voltage	1.50	1.60	1.65	V
C _{1P5}	V1P5D output capacitor	_	2.2	_	μF

16.2 Buck regulators (SWx)

The PF5200 features two low voltage regulators with input supply range from UVDET to 5.5 V and output voltage range from 0.6 V to 1.2 V in 6.25 mV steps. Each voltage regulator is capable to supply 8 A and features a programmable DVS ramp for system power optimization.

Power management integrated circuit (PMIC) for high performance applications

The OTP_SWxDVS_RAMP bit sets the default step/time ratio for the power up ramp during the power up/down sequence as well as the DVS slope during the system On.

The power down ramp and DVS rate during the system On of SW1 and SW2 can be modified during the system On state by changing the SWxDVS_RAMP bit on the I²C register map.

The DVS ramp rate is based on the internal clock configuration as shown in Table 30.

Table 30. SWx ramp rates

All ramp rates are typical values. Clock frequency tolerance = \pm 6 %.

CLK_ Switching		DVS_RAMP = 00		DVS_RAMP = 01		DVS_RAMP = 10		DVS_RAMP = 11	
FREQ[3:0]	regulators frequency (MHz)	Ramp up rate (mV/µs)	Ramp down rate (mV/µs)	Ramp up rate (mV/µs)	Ramp down rate (mV/µs)	Ramp up rate (mV/µs)	Ramp down rate (mV/µs)	Ramp up rate (mV/µs)	Ramp down rate (mV/µs)
0000	2.500	7.81	5.21	15.63	10.42	3.91	2.60	1.95	1.30
1001	2.000	6.25	4.17	12.50	8.33	3.13	2.08	1.56	1.04
1010	2.125	6.64	4.43	13.28	8.85	3.32	2.21	1.66	1.11
1011	2.250	7.03	4.69	14.06	9.38	3.52	2.34	1.76	1.17
1100	2.375	7.42	4.95	14.84	9.90	3.71	2.47	1.86	1.24

Buck regulators SWx use 8 bits to set the output voltage.

• The VSWx_RUN[7:0] set the output voltage during Run mode.

The default output voltage configuration for Run mode is loaded from the OTP SWx VOLT registers upon power up.

Power management integrated circuit (PMIC) for high performance applications

Table 31. SWx output voltage configuration

Set point	VSWx_RUN[7:0]	V _{SWxFB} (V)
0 to 31	00000000 to 00011111	Reserved
32	00100000	0.60000
33	00100001	0.60625
34	00100010	0.61250
126	01111110	1.18750
127	01111111	1.19375
128	10000000	1.20000
178 to 255	10000001 to 11111111	Reserved

DVS operation is available for all voltage settings between 0.6 V to 1.2 V.

Each regulator is provided with two bits to set its mode of operation.

• The SWx_RUN_MODE[1:0] bits allow the user to change the mode of operation of the SWx regulators during the run state. If the regulator was programmed as part of the powerup sequence, the SWx_RUN_MODE[1:0] bits are loaded with 0b01 (PWM mode) by default. Otherwise it is loaded with 0b00 (disabled).

Table 32. SWx regulator mode configuration

SWx_MODE[1:0]	Mode of operation
00	OFF
01	PWM mode
10	Reserved
11	Reserved

To avoid potential detection of an OV/UV fault during SWx ramp up, it is recommended to power up the regulator in PWM mode.

SWx regulators use 2 bits SWxILIM[1:0], to program the current limit detection threshold of inductor peak current.

Table 33. SWx current limit selection

SWxILIM[1:0]	Typical current limit
00	9.0 A
01	10.0 A
10	11.0 A
11	Reserved

During single phase operation, all buck regulators use 3 bits (SWxPHASE[2:0]) to control the phase shift of the switching frequency. Upon power up, the switching phase of all regulators is defaulted to 0 degrees and can be modified during the system On state.

Table 34. SWx phase configuration

SWx_PHASE[2:0]	Phase shift [degrees]
000	+45
001	+90
010	+135

PF5200 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved

Power management integrated circuit (PMIC) for high performance applications

Table 34. SWx phase configuration...continued

SWx_PHASE[2:0]	Phase shift [degrees]
011	+180
100	+225
101	+270
110	+315
111	0 (default)

Each one of the buck regulator provides 2 OTP bits to configure the value of the inductor used in the corresponding block. The OTP_SWx_LSELECT[1:0] allows to choose the inductor as shown in <u>Table 35</u>.

Table 35. SWx inductor selection bits

OTP_SWx_LSELECT[1:0]	Inductor value
00	0.47 μΗ
01	Reserved
10	Reserved
11	Reserved

16.3 Multiphase operation

Regulators SW1 and SW2 can be configured in dual phase mode. In this mode, SW1 registers control the output voltage and other configurations. Likewise, SW1FB pin becomes the main feedback node for the resulting voltage rail, however the two FB pins should be connected together.

The OTP SW1CONFIG[1:0] bits are used to select the multiphase configuration for SW1/SW2.

Table 36. OTP_SW1CONFIG register description

OTP_SW1CONFIG[1:0]	Description
00	SW1 and SW2 operate in single phase mode
01	SW1/SW2 operate in dual phase mode
10	Reserved
11	Reserved

16.4 Electrical characteristics

Table 37. Buck regulator electrical characteristics

All parameters are specified at T_A = -40 to 125 °C, V_{SWXIN} = UVDET to 5.5 V, V_{SWXFB} = 1.0 V, I_{SWX} = 500 mA, typical external component values, f_{SW} = 2.25 MHz, unless otherwise noted. Typical values are characterized at V_{SWXIN} = 5.0 V, V_{SWXFB} = 1.0 V, I_{SWX} = 500 mA, and T_A = 25 °C, unless otherwise noted.

Symbol	Parameter	Min	Тур	Max	Unit
V _{SWxIN}	Operating functional input voltage	UVDET	_	5.5	V
VswxACC	Output voltage accuracy PWM mode $0.6 \text{ V} \leq \text{V}_{\text{SWxFB}} \leq 0.8 \text{ V}$ $0 \leq \text{I}_{\text{SWx}} \leq 8.0 \text{ A}$	-10	_	10	mV
VswxACC	Output voltage accuracy PWM mode 0.8 V < V _{SWxFB} ≤ 1.2 V 0 ≤ I _{SWx} ≤ 8.0 A	-1.5	_	1.5	%
I _{SWx}	Max load current in single phase	8000	_	_	mA
I _{SWx_DP}	Max load current in dual phase	16000	_	_	mA

PF5200

All information provided in this document is subject to legal disclaimers

© 2024 NXP B.V. All rights reserved.

Power management integrated circuit (PMIC) for high performance applications

Table 37. Buck regulator electrical characteristics...continued

All parameters are specified at T_A = -40 to 125 °C, V_{SWxIN} = UVDET to 5.5 V, V_{SWxFB} = 1.0 V, I_{SWx} = 500 mA, typical external component values, f_{SW} = 2.25 MHz, unless otherwise noted. Typical values are characterized at V_{SWxIN} = 5.0 V, V_{SWxFB} = 1.0 V, I_{SWx} = 500 mA, and T_A = 25 °C, unless otherwise noted.

Symbol	Parameter	Min	Тур	Max	Unit
I _{SWxLIM}	Current limit in single phase - inductor peak current SWxILIM[1:0] = 00	7.2	9.0	10.8	A
I _{SWxLIM}	Current limit in single phase - inductor peak current SWxILIM[1:0] = 01	8.0	10	12	A
I _{SWxLIM}	Current limit in single phase - inductor peak current SWxILIM[1:0] = 10	8.8	11	13.2	A
I _{SWxLIM}	Current limit in single phase - inductor peak current SWxILIM[1:0] = 11	10	12.5	15	A
I _{SWxNLIM}	Negative current limit in single phase mode	-4.9	-3.5	-2.1	A
I _{SWxxLIM_DP}	Current limit in dual phase - inductor peak current SWxILIM = 00 (master)	14.4	18	21.6	A
I _{SWxxLIM_DP}	Current limit in dual phase - inductor peak current SWxILIM = 01 (master)	16	20	24	A
I _{SWxxLIM_DP}	Current limit in dual phase - inductor peak current SWxILIM = 10 (master)	17.6	22	26.4	A
I _{SWxxLIM_DP}	Current limit in dual phase - inductor peak current SWxILIM = 11 (master)	20	25	30	A
V _{SWxOSH}	Startup overshoot SWxDVS RAMP = 6.25 mV/µs VSWxIN = 5.5 V, VSWxFB = 1.0 V	-25	25	50	mV
t _{ONSWXMAX}	Maximum turn on time From enable to 90 % of end value SWxDVS RAMP = 00 (6.25 mV/µs) VSWxIN = 5.5 V, VSWxFB = 1.2 V, Fsw = 2 MHz	_	_	310	μs
t _{ONSWx_MIN}	Minimum turn on time From enable to 90 % of end value SWxDVS RAMP = 01 (12.5 mV/µs) VSWxIN = 5.5 V, VSWxFB = 0.6 V, Fsw = 2 MHz	34	_	_	μs
η _{SWx}	Efficiency (PWM mode, 1.0 V, 2000 mA)	_	87	_	%
η _{SWx}	Efficiency (PWM mode, 1.0 V, 4000 mA)	_	88		%
η _{SWx}	Efficiency (PWM mode, 1.0 V, 6000 mA)	_	87		%
η _{SWx}	Efficiency (PWM mode, 1.0 V, 8000 mA)	_	84	_	%
V _{SWXLOTR}	Transient load regulation (overshoot/undershoot) at 0.8 V < VSWxFB ≤ 1.2 V, COUT = 44 µF per phase ILOAD = 200 mA to 1.0 A, di/dt = 2.0 A/µs (Single phase) ILOAD = 400 mA to 2.0 A, di/dt = 4.0 A/µs (Dual phase)	-25	_	25	mV
F _{SWx}	PWM switching frequency range Frequency set by CLK_FREQ[3:0]	2.0	_	2.5	MHz
T _{OFFminSWx}	Minimum off time	_	20	_	ns
T _{DBSWx}	Deadband time	_	3.0	_	ns
T _{slew}	Slewing time (10 % to 90 %)	_	_	10	ns
D _{VSWx}	Output ripple in PWM mode at V _{SWxFB} = 1.0 V	_	1	10	mV
R _{SWxDIS}	Discharge resistance Regulator disabled and ramp down completed	50	100	200	Ω

Power management integrated circuit (PMIC) for high performance applications

Table 38. Recommended external components

Symbol	Parameter	Min	Тур	Max	Unit
L	Output inductor Recommended inductor DC resistance 8 m Ω Minimum saturation current at full load: 10 A	_	0.47	_	μH
C _{out}	Output effective capacitance Use 4 × 22 µF, 6.3 V X7T ceramic capacitor to reduce output capacitance ESR	44	88	500	μF
C _{in}	Input capacitor 10 μF, 10 V X7R ceramic capacitor	_	10	_	μF

^[1] Keep inductor DCR as low as possible to improve regulator efficiency.

16.5 Voltage monitoring

The PF5200 provides OV and UV monitoring capability for the following voltage regulators:

• SW1, SW2

A programmable UV threshold is selected via the OTP_SWxUV_TH[1:0]. UV threshold selection represents a percentage of the nominal voltage programmed on each regulator.

Table 39. UV threshold configuration

OTP_SWxUV_TH[1:0]	UV threshold level
00	96.5 %
01	96 %
10	95.5 %
11	95 %

A programmable OV threshold is selected via the OTP_SWxOV_TH[1:0]. OV threshold selection represents a percentage of the nominal voltage programmed on each regulator.

Table 40. OV threshold configuration

OTP_SWxOV_TH	OV threshold level
00	103.5 %
01	104 %
10	104.5 %
11	105 %

Two functional bits are provided to program the UV debounce time for the voltage regulators.

Table 41. UV debounce timer configuration

UV_DB[1:0]	UV debounce time
00	5 µs
01	15 μs
10	30 μs
11	40 μs

The default value of the UV_DB[1:0] upon a full register reset is 0b10.

Two functional bits to program the OV debounce time for all the voltage regulators.

PF5200

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

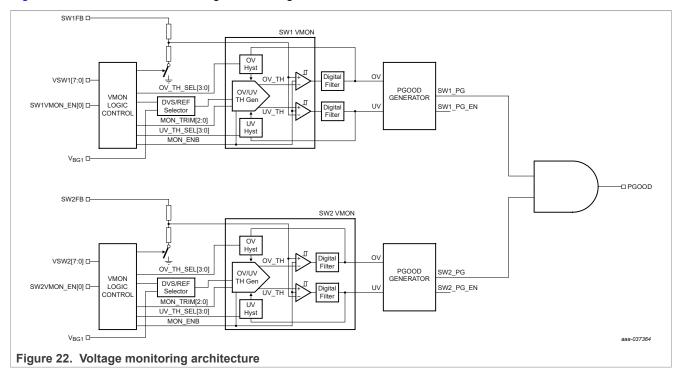
Power management integrated circuit (PMIC) for high performance applications

Table 42. OV debounce timer configuration

OV_DB[1:0]	OV debounce time
00	30 μs
01	50 μs
10	80 µs
11	125 µs

The default value of the OV_DB[1:0] upon a full register reset is 0b00.

The VMON_EN bits enable or disable the OV/UV monitor for each one of the external regulators (SWxVMON_EN).


- When the VMON EN bit of a specific regulator is 1, the voltage monitor for that specific regulator is enabled.
- When the VMON_EN bit of a specific regulator is 0, the voltage monitor for that specific regulator is disabled.

By default, the VMON_EN bits are set to 1 on power up.

When the I2C_SECURE_EN = 1, a secure write must be performed to set or clear the VMON_EN bits to enable or disable the voltage monitoring for a specific regulator.

On enabling a regulator, the UV/OV monitor is masked until the corresponding regulator reaches the point of regulation. If a voltage monitor is disabled, the UV_S and OV_S indicators from that monitor are reset to 0.

Figure 22 shows the PF5200 voltage monitoring architecture.

16.5.1 Electrical characteristics

Table 43. VMON electrical characteristics

All parameters are specified at $T_A = -40$ °C to 125 °C, unless otherwise noted. Typical values are characterized at $V_{IN} = 5.0$ V, $V_{xFB} = 1.5$ V (Buck regulator), and $T_A = 25$ °C, unless otherwise noted.

Symbol	Parameter	Min	Тур	Max	Unit
I _{QON}	Block quiescent current, when block is enabled one block per regulator				μA

PF5200 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved

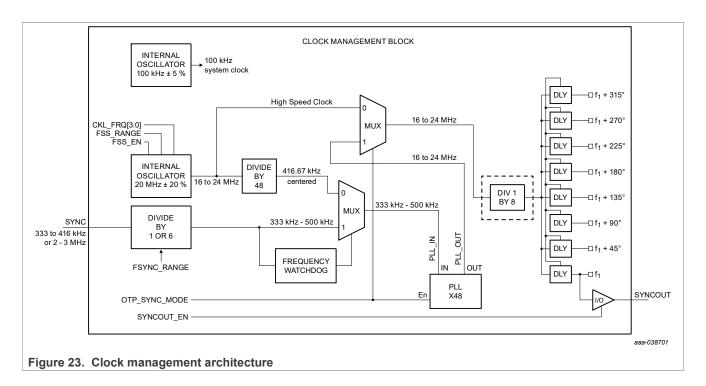
Power management integrated circuit (PMIC) for high performance applications

Table 43. VMON electrical characteristics...continued

All parameters are specified at $T_A = -40$ °C to 125 °C, unless otherwise noted. Typical values are characterized at $V_{IN} = 5.0$ V, $V_{xFB} = 1.5$ V (Buck regulator), and $T_A = 25$ °C, unless otherwise noted.

Symbol	Parameter	Min	Тур	Max	Unit
	one block per regulator	_	10	13	
I _{OFF}	Block leakage current when disabled	_	_	500	nA
t _{ON_MON}	Voltage monitor settling time after enabled	_	_	30	μs
V _x FBUVHysteresis	Power good (UV) hysteresis Voltage difference between UV rising and falling thresholds	_	0.5	_	%
V _{UV_Tol}	Undervoltage falling threshold accuracy With respect to target feedback voltage tolerance when V _{SWxFB} > 0.75 V	-1.5	_	1.5	%
V _{UV_Tol}	Under voltage falling threshold accuracy With respect to target feedback voltage when VSWxFB ≤ 0.75 V	-2	_	2	%
t _{UV_DB}	Power good (UV) debounce time UV_DV = 00	2.5	5.0	7.5	μs
	Power good (UV) debounce time UV_DV = 01	10	15	20	
	Power good (UV) debounce time UV_DV = 10	20	30	40	
	Power good (UV) debounce time UV_DV = 11	25	40	55	
V _{OV_Tol}	Overvoltage rising threshold accuracy With respect to target feedback voltage tolerance when V _{SWxFB} > 0.75 V	-1.5	_	1.5	%
V _{OV_Tol}	Overvoltage rising threshold With respect to target feedback voltage tolerance when V _{SWxFB} ≤ 0.75 V	-2	_	2	%
V _x FBOVHysteresis	Overvoltage (OV) hysteresis Voltage difference between OV rising and falling thresholds	_	0.5	_	%
t _{OV_DB}	Power good (OV) debounce time OV_DV = 00	20	30	40	μs
	Power good (OV) debounce time OV_DV = 01	35	50	65	
	Power good (OV) debounce time OV_DV = 10	55	80	105	
	Power good (OV) debounce time OV_DV = 11	90	125	160	

16.6 Clock management


The clock management provides a top-level management control scheme of internal clock and external synchronization intended to be primarily used for the switching regulators. The clock management incorporates various subblocks:

- Low power 100 kHz clock
- · Internal high frequency clock with programmable frequency
- Phase Locked Loop (PLL)

A digital clock management interface is in charge of supporting interaction among these blocks.

The clock management provides clocking signals for the internal state machine, the switching frequencies for the seven buck converters as well as the multiples of those switching frequencies in order to enable phase shifting for multiple phase operation.

Power management integrated circuit (PMIC) for high performance applications

16.6.1 Low frequency clock

A low power 100 kHz clock is provided for overall logic and digital control. Internal logic and debounce timers are based on this 100 kHz clock.

16.6.2 High frequency clock

The PF5200 features a high frequency clock with nominal frequency of 20 MHz. Clock frequency is programmable via the CLK_FREQ[3:0] control bits.

16.6.3 Manual frequency tuning

The PF5200 features a manual frequency tuning to set the switching frequency of the high frequency clock. The CLK_FREQ [3:0] bits allow a manual frequency tuning of the high frequency clock from 16 MHz to 20 MHz.

If a frequency change of two or more steps is requested by a single I²C command, the device performs a gradual frequency change passing through all steps in between with a 5.2 µs time between each frequency step. When the frequency reaches the programmed value, the FREQ_RDY_I is set, provided it is not masked.

When the internal clock is used as the main frequency for the power generation, an internal frequency divider by 8 is used to generate the switching frequency for all the buck regulators. Adjusting the frequency of the high frequency clock allows for manual tuning of the switching frequencies for the buck regulators from 2.0 MHz to 2.5 MHz.

Power management integrated circuit (PMIC) for high performance applications

Table 44. Manual frequency tuning configuration

CLK_FREQ[3:0]	High speed clock frequency (MHz)	Switching regulators frequency (MHz)
0000	20	2.500
0001	Not used	Not used
0010	Not used	Not used
0011	Not used	Not used
0100	Not used	Not used
0101	Not used	Not used
0110	Not used	Not used
0111	Not used	Not used
1000	Not used	Not used
1001	16	2.000
1010	17	2.125
1011	18	2.250
1100	19	2.375
1101	Not used	Not used
1110	Not used	Not used
1111	Not used	Not used

The default switching frequency is set by the OTP_CLK_FREQ[3:0] bits.

Manual tuning cannot be applied when frequency spread-spectrum or external clock synchronization is used. However, during external clock synchronization, it is recommended to program the CLK_FREQ[3:0] bits to match the external frequency as close as possible.

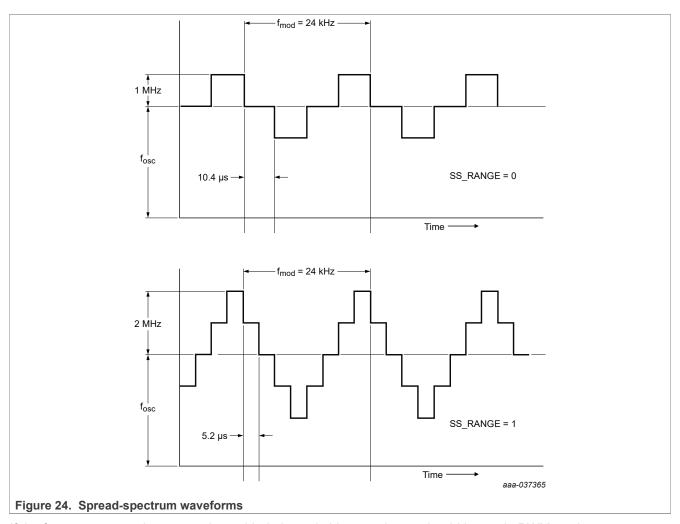
16.6.4 Spread-spectrum

The internal clock provides a programmable frequency spread spectrum with two ranges for narrow spread and wide spread to help manage EMC in the automotive applications.

- When the FSS_EN = 1, the frequency spread-spectrum is enabled.
- When the FSS_EN = 0, the frequency spread-spectrum is disabled.

The default state of the FSS EN bit upon a power up can be configured via the OTP FSS EN bit.

The FSS_RANGE bit is provided to select the clock frequency range.


- When FSS RANGE = 0, the maximum clock frequency range is ±5 %.
- When FSS RANGE = 1, the maximum clock frequency range is ±10 %.

The default value of the FSS RANGE bit upon a power up can be configured via the OTP FSS RANGE bit.

The frequency spread-spectrum is performed at a 24 kHz modulation frequency when the internal high frequency clock is used to generate the switching frequency for the switching regulators. When the external clock synchronization is enabled, the spread-spectrum is disabled.

Figure 24 shows implementation of spread-spectrum for two settings.

Power management integrated circuit (PMIC) for high performance applications

If the frequency spread-spectrum is enabled, the switching regulators should be set in PWM mode to ensure clock synchronization at all time.

If the external clock synchronization is enabled, (SYNC_MODE = 1), the spread spectrum is disabled regardless of the value of the FSS_EN bit.

16.6.5 Clock synchronization

An external clock can be fed via the SYNC pin to synchronize the switching regulators to this external clock.

When the OTP_SYNC_MODE = 0, the external clock synchronization is disabled. In this case, the PLL is disabled, and the device always uses the internal high frequency clock to generate the main frequency for the switching regulators.

When the OTP_SYNC_MODE = 1, the external clock synchronization is enabled. In this case, the internal PLL is always enabled and it uses either the internal high frequency clock or the SYNC pin as the source to generate the main frequency for the switching regulators.

If the SYNCIN function is not used, the pin should be grounded. If the external clock is meant to start up after the PMIC has started, the SYNC pin must be maintained low until the external clock is applied.

The SYNC pin is prepared to detect clock signals with a 1.8 V or 3.3 V amplitude and within the frequency range set by the FSYNC RANGE bit.

Power management integrated circuit (PMIC) for high performance applications

- When the FSYNC_RANGE = 0, the input frequency range at SYNC pin should be between 2000 kHz and 2500 kHz.
- When the FSYNC_RANGE = 1, the input frequency range at SYNC pin should be between 333 kHz and 416 kHz.

The OTP_FSYNC_RANGE bit is used to select the default frequency range accepted in the SYNC pin.

The external clock duty cycle at the SYNC pin should be between 45 % and 55 %. An input frequency in the SYNC pin outside the range defined by the FSYNC_RANGE bit is detected as invalid. If the external clock is not present or invalid, the device automatically switches to the internal clock and sets the FSYNC_FLT_I interrupt.

The FSYNC_FLT_S bit is set to 1 as long as the input frequency is not preset or invalid, and it is cleared to 0 when the SYNC has a valid input frequency.

The device switches back to the external switching frequency only when both, the FSYNC_FLT_I interrupt has been cleared and the SYNC pin sees a valid frequency.

When the external clock is selected, the switching regulators should be set in PWM mode to ensure clock synchronization at all time.

Upon an external clock failure, the MCU must proof the integrity of the external clock by implementing a 3-step diagnostic strategy.

- 1. MCU shall acknowledge and find the source of the interrupt event.
- 2. After deciding the interrupt is generated by the FSYNC_FLT_I event, the MCU must read the FSYNC_FLT_S bit to verify if the fault condition is persistent or not.
- 3. a. If FSYNC_FLT_S bit is 0, the fault condition can be considered as a transient condition and the system is ready to switch over to the external clock by clearing the FSYNC_FLT_I flag.
 - b. If the FSYNC_FLT_S bit is 1, the fault is considered a persistent fault and the MCU must take corrective action to send the system to safe operation.

When the OTP_SYNC_MODE = 0 and OTP_SYNCOUT_EN = 1, the SYNC pin is used to synchronize an external device to the PF5200.

The SYNC pin outputs the main frequency used for the switching regulators in the range of 2.0 MHz to 2.5 MHz. The SYNCOUT_EN bit can be used to enable or disable the SYNCOUT feature via I²C during the system On state.

- When SYNCOUT EN = 0, the SYNCOUT feature is disabled and the pin is internally pulled to ground.
- When SYNCOUT EN = 1, the SYNC pin toggles at the base frequency used by the switching regulators.

The SYNCOUT function can be enabled or disabled by default by using the OTP SYNCOUT EN bit.

Table 45. Clock management specifications

All parameters are specified at T_A = -40 to 125 °C, unless otherwise noted. Typical values are characterized at V_{IN} = 5.0 V and T_A = 25 °C, unless otherwise noted.

Symbol	Parameter	Min	Тур	Max	Unit
Low frequency clo	ck				
I _{Q100KHz}	100 kHz clock quiescent current	_	_	3.0	μA
f _{100KHzACC}	100 kHz clock accuracy	-5.0	_	5.0	%
High frequency clo	ock	•	•		
f _{20MHz}	High frequency clock nominal frequency via CLK_FREQ[3:0] = 0000	_	20	_	MHz
f _{20MzACC}	High frequency clock accuracy	-5.0	_	5.0	%
t _{20MHzStep}	Clock step transition time Minimum time to transition from one frequency step to the next in manual tuning mode	_	5.2	_	μs
FSS _{RANGE}	Spread-spectrum range				%

PF5200

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Power management integrated circuit (PMIC) for high performance applications

Table 45. Clock management specifications...continued

All parameters are specified at T_A = -40 to 125 °C, unless otherwise noted. Typical values are characterized at V_{IN} = 5.0 V and T_A = 25 °C, unless otherwise noted.

Symbol	Parameter	Min	Тур	Max	Unit
	FSS_RANGE= 0 via CLK_FREQ[3:0] Spread-spectrum is done around center frequency of 20 MHz	_	±5.0	_	
FSS _{RANGE}	SS _{RANGE} Spread-spectrum range FSS_RANGE= 1 via CLK_FREQ[3:0] Spread-spectrum is done around center frequency of 20 MHz		±10	_	%
FSS _{mod}	Spread spectrum frequency modulation	_	24	_	kHz
Clock synchronization					
f _{SYNCIN}	SYNC input frequency range FSYNC_RANGE = 0	2000	_	2500	kHz
f _{SYNCIN}	SYNC input frequency range FSYNC_RANGE = 1	333	_	416	kHz
f _{SYNCOUT}	SYNC output frequency range via CLK_FREQ[3:0]	2000	_	2500	kHz
V _{SYNCINLO}	Input frequency low voltage threshold	_	_	0.3*VDDIO	V
V _{SYNCINHI}	Input frequency high voltage threshold	0.7*VDDIO	_	_	V
R _{PD_SYNCIN}	SYNC internal pull down resistance	0.475	1.0	_	ΜΩ
V _{SYNCOUTLO}	Output frequency low voltage threshold	0	_	0.4	V
V _{SYNCOUTHI}	Output frequency high voltage threshold	VDDIO - 0.5	_	_	V

16.7 Thermal monitoring

The PF5200 features a temperature sensor at the center of the die which is used to generate the thermal interrupts and thermal shutdown.

Figure 25 shows a high level block diagram of the thermal monitoring architecture in PF5200.

Power management integrated circuit (PMIC) for high performance applications

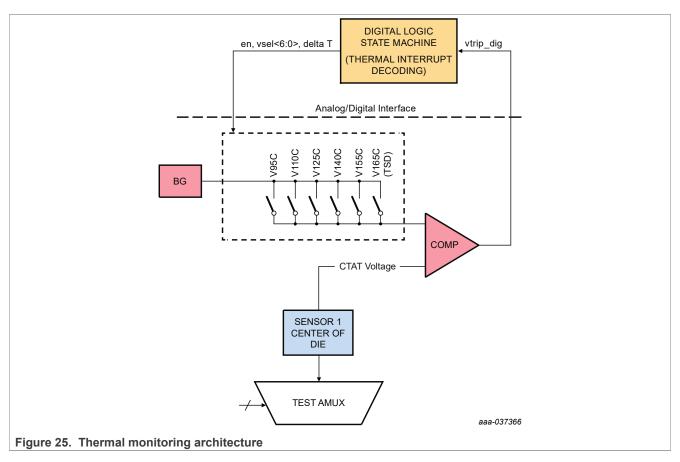


Table 46. Thermal monitor specifications

Symbol	Parameter	Min	Тур	Max	Unit
V _{IN}	Operating voltage range of thermal circuit	UVDET	<u> </u>	5.5	V
TCOF	Thermal sensor coefficient	_	-3.8	_	mV/°C
V _{TSROMM}	Thermal sensor voltage 24 °C	_	1.414	_	V
T _{SEN_RANGE}	Thermal sensor temperature range	-40		175	°C
T _{95C}	95 °C temperature threshold	85	95	105	°C
T _{110C}	110 °C temperature threshold	100	110	120	°C
T _{125C}	125 °C temperature threshold	115	125	135	°C
T _{140C}	140 °C temperature threshold	130	140	150	°C
T1 _{55C}	155 °C temperature threshold	145	155	165	°C
T _{SD}	Thermal shutdown threshold	155	165	175	°C
T _{WARN_HYS}	Thermal threshold hysteresis	_	5.0	_	°C
T _{SD_HYS}	Thermal shutdown hysteresis	-	10	_	°C
t_temp_db	Debounce timer for temperature thresholds (bidirectional)	_	10	_	ms
t _{Sinterval}	Sampling interval time When TMP_MON_AON = 1	_	3.0	_	ms
t _{Swindow}	Sampling window When TMP_MON_AON = 1	_	450	_	μs

Note: Sensor temperature is calculated with the following formula: $T [^{\circ}C] = (VTSENSE - 1.505 V) / TCOF$, where VTSENSE is the thermal sensor voltage measured on PGOOD when AMUX is enabled.

Power management integrated circuit (PMIC) for high performance applications

As the temperature crosses the thermal thresholds, the corresponding interrupts are set to notify the system. The processor may take appropriate action to bring down the temperature (either by turning off external regulators, reducing load, or turning on a fan).

A 5 °C hysteresis is implemented on a falling temperature in order to release the corresponding THERM_x_S signal. When the shutdown threshold is crossed, the PF5200 initiates a thermal shutdown and it prevents from turning back on until the 10 °C thermal shutdown hysteresis is crossed as the device cools down.

The temperature monitor can be enabled or disabled via I²C with the TMP MON EN bit.

- When TMP_MON_EN = 0, the temperature monitor circuit is disabled.
- When TMP_MON_EN = 1, the temperature monitor circuit is enabled.

In the Run state, the temperature sensor can operate in always On or Sampling modes.

- When the TMP MON AON = 1, the device is always on during the Run mode.
- When the TMP_MON_AON = 0, the device operates in sampling mode to reduce current consumption in the system. In Sampling mode, the thermal monitor is turned on during 450 µs at a 3.0 ms sampling interval.

Table 47. Thermal monitor bit description

Bit(s)	Description
THERM_95_I, THERM_95_S, THERM_95_M	Interrupt, sense and mask bits for 95 °C threshold
THERM_110_I, THERM_110_S, THERM_110_M	Interrupt, sense and mask bits for 110 °C threshold
THERM_125_I, THERM_125_S, THERM_125_M	Interrupt, sense and mask bits for 125 °C threshold
THERM_140_I, THERM_140_S, THERM_140_M	Interrupt, sense and mask bits for 140 °C threshold
THERM_155_I, THERM_155_S, THERM_155_M	Interrupt, sense and mask bits for 155 °C threshold
TMP_MON_EN	Disables temperature monitoring circuits when cleared
TMP_MON_AON	When set, the temperature monitoring circuit is always ON. When cleared, the temperature monitor operates in Sampling mode.

16.8 Analog multiplexer

An analog multiplexer (AMUX) is provided to allow access to internal temperature monitor. The selected voltage is buffered and made available on the PGOOD output pin.

When the AMUX EN bit is 0, the AMUX block is disabled and the PGOOD block is enabled.

When the AMUX_EN bit is 1, the AMUX block is enabled and the PGOOD block is disabled. The system can select the channel to be read using the AMUX_SEL bits. The AMUX output is selected by the AMUX_SEL[4:0] bits.

Table 48. AMUX channel selection

AMUX_EN	AMUX_SEL[4:0]	AMUX selection
0	XXXXX	PGOOD mode
1	00000	Disabled - high impedance
1	00001 to 00011	Reserved
1	00100	TEMP_IC
1	00101 to 11111	Reserved

When the AMUX_EN = 1, and the AMUX_SEL = 00000, the AMUX output is set to a high impedance mode to allow an external signal to drive the AMUX node. The AMUX is enabled and accessible during the system On states.

Power management integrated circuit (PMIC) for high performance applications

16.9 Watchdog event management

A watchdog failure is triggered by the following event:

The internal watchdog expiration counter reaches the maximum value the WD timer is allowed to expire
 A watchdog event initiated by the internal watchdog always performs a hard WD reset.

16.9.1 Internal watchdog timer

The internal WD timer counts up and it expires when it reaches the value in the WD_DURATION[3:0] bits. When the WD timer starts counting, the WD_CLEAR flag is set to 1. Clearing the WD_CLEAR flag within the valid window is interpreted as a successful watchdog refresh and the WD timer gets reset. The MCU must write a 1 to clear the WD_CLEAR flag.

The WD timer is reset when device goes into any of the Off modes and does not start counting until RESETBMCU is deasserted in the next power up sequence.

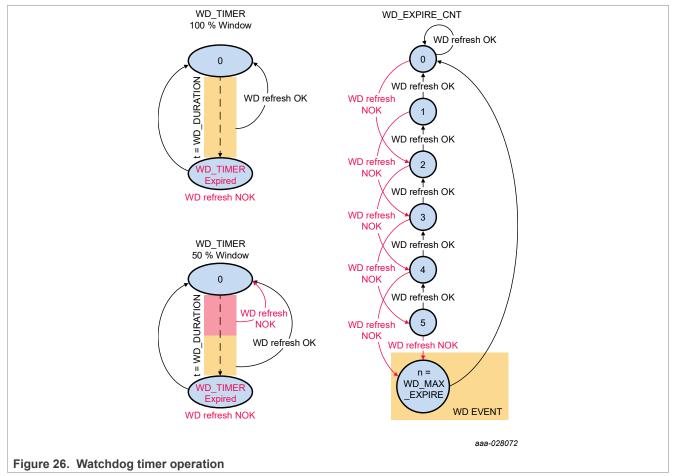
The OTP_WD_DURATION[3:0] selects the initial configuration for the watchdog window duration between 1.0 ms and 32768 ms (typical values).

The watchdog window duration can change during the system On state by modifying the WD_DURATION[3:0] bits in the functional register map. If the WD_DURATION[3:0] bits get changed during the system On state, the WD timer is reset.

Table 49. Watchdog duration configuration

WD_DURATION[3:0]	Watchdog timer duration (ms)
0000	1
0001	2
0010	4
0011	8
0100	16
0101	32
0110	64
0111	128
1000	256
1001	512
1010	1024
1011	2048
1100	4096
1101	8192
1110	16384
1111	32768

The WD_EXPIRE_CNT[2:0] counter is used to ensure no cyclic watchdog condition occurs. When the WD_CLEAR flag is cleared successfully before the WD timer expires, the WD_EXPIRE_CNT[2:0] is decreased by 1. Every time the WD timer is not successfully refreshed, it gets reset and starts a new count and the WD_EXPIRE_CNT[2:0] is increased by 2.


If WD_EXPIRE_CNT[2:0] = WD_MAX_EXPIRE[2:0], a WD event is initiated. The default maximum amount of time the watchdog can expire before starting a WD reset, is set by the OTP_WD_MAX_EXPIRE[2:0]. Writing a

Power management integrated circuit (PMIC) for high performance applications

value less than or equal to 0x02 on the OTP_WD_MAX_EXPIRE causes the watchdog event to be initiated, as soon as the WD timer expires for the first time.

The OTP WDWINDOW bit selects whether the watchdog is single ended or window mode.

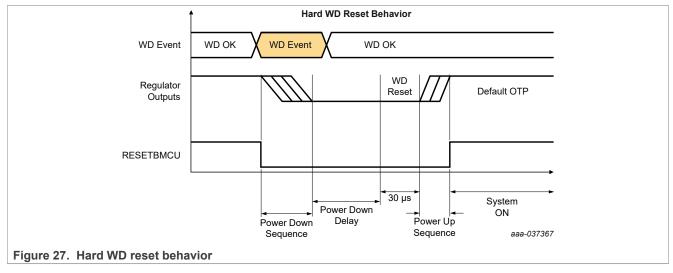
- When OTP_WDWINDOW = 0, the WD_CLEAR flag can be cleared within 100 % of the watchdog timer.
- When OTP_WDWINDOW = 1, the WD_CLEAR flag can only be cleared within the second half of the programmed watchdog timer. Clearing the WD_CLEAR flag within the first half of the watchdog window is interpreted as a failure to refresh the watchdog.

The watchdog function can be enabled or disabled by writing the WD_EN bit in the I^2 C register map. When the I2C SECURE EN = 1, a secure write must be performed to change the WD_EN bit.

- When WD EN = 0 the internal watchdog timer operation is disabled.
- When WD EN = 1 the internal watchdog timer operation is enabled.

The OTP_WD_EN bit is used to select the default status of the watchdog counter upon power up.

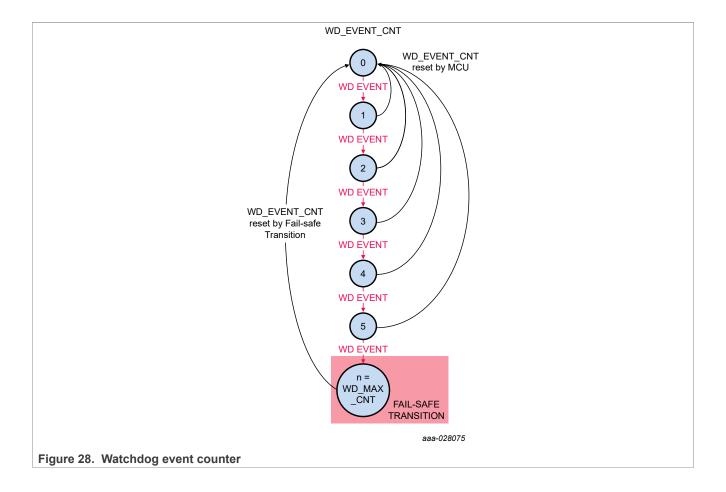
16.9.2 Watchdog reset behaviors


When a watchdog fault is detected, a hard WD reset is performed.

A hard WD reset is used to force a system power-on reset when the MCU has becomes unresponsive. In this scenario, a full OTP register reset is performed.

Power management integrated circuit (PMIC) for high performance applications

During a hard WD reset, the device turns off all regulators and asserts RESETBMCU as indicated by the power down sequence. If PGOOD is programmed as a GPO and configured as part of the power up sequence, it is disabled accordingly.


After all regulator's outputs have gone through the power down sequence and the power down delay is finished, the device waits for 30 μ s before reloading the default OTP configuration and get ready to start a power up sequence if the XFAILB pin is not held low externally.

Every time a WD event occurs, the WD_EVENT_CNT[3:0] nibble is incremented. To prevent continuous failures, if the WD_EVENT_CNT[3:0] = WD_MAX_CNT[3:0] the state machine will proceed to the fail-safe transition. The MCU is expected to clear the WD_EVENT_CNT[3:0] when it is able to do so in order to keep proper operation. Upon power up, the WD_MAX_CNT[3:0] is loaded with the values on the OTP_WD_MAX_CNT[3:0] bits.

Every time the device passes through the off states, the WD_EVENT_CNT[3:0] is reset to 0x00, to ensure the counter has a fresh start after a device power down.

Power management integrated circuit (PMIC) for high performance applications

Power management integrated circuit (PMIC) for high performance applications

17 I²C register map

The PF5200 provides a complete set of registers for control and diagnostics of the PMIC operation. The configuration of the device is done at two different levels.

At first level, the OTP mirror registers provide the default hardware and software configuration for the PMIC upon power up. These are one-time programmable and should be defined during the system development phase, and are not meant to be modified during the application. See <u>Section 18 "OTP/TBB mode"</u> for the OTP configuration feature.

At a second level, the PF5200 provides a set of functional registers intended for system configuration and diagnostics during the system operation. These registers are accessible during the system On state and can be modified at any time by the system control unit.

The device ID register provides general information about the PMIC:

- DEVICE_FAM[3:0]: indicates the PF5200 family of devices.
 0101 (fixed)
- DEVICE_ID[3:0]: provides the device type identifier 0010 = PF5200 QM 1010 = PF5200 ASIL B

Registers 0x02 and 0x03 provide a customizable program ID registers to identify the specific OTP configuration programmed in the part.

- EMREV (Address 0x02): contains the MSB bits PROG_ID[8:11]
- PROG_ID (Address 0x03): contains the LSB bit PROG_ID[7:0]

17.1 PF5200 OTP mirror register map

	Reset types
	 OTP mirror registers reset from OTP fuses when VIN crosses UVDET threshold Functional registers loaded with the OTP mirror registers values during power up
OTP	Available in OTP mirror only. Reset from OTP fuses when VIN crosses UVDET threshold

MIRROR ADDR	FUSE ADDR	Register name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
A0	0	OTP I2C	_	_	_	OTP_I2C_ SECURE_EN	OTP_I2C_CRC_EN	OTP_I2C_ADD[2:0]		
A1	1	OTP CTRL1	_	_	OTP_EWAR	N_TIME[1:0]	OTP_FS_BYPASS	-	OTP_PG_ACTIVE	OTP_PG_CHECK
A2	2	OTP CTRL2	OTP_FSS_EN	OTP_FSS_RANGE	-	OTP_XFAILB_EN	OTP_VIN_OVLO_ SDWN	OTP_VIN_OVLO_ EN	N_OVLO_ Reserved	
A3	3	OTP CTRL3	_	_	_	_	_	_	OTP_SW	1CONFIG
A4	4	OTP FREQ CTRL	OTP_SW_MODE	OTP_SYNC_MODE	OTP_SYNCOUT_ EN	OTP_FSYNC_ RANGE		OTP_CLK_FREQ[3:0]		
A5	5	OTP PWRON	_	_	OTP_PWRON_ MODE	OTP_PWRO	N_DBNC[1:0]	OTP_PWRON_ OTP_TRESET[1:0] RST_EN		ESET[1:0]
A6	6	OTP WD CONFIG	_	_	_	-	OTP_WD_EN	-	-	OTP_WDWINDOW
A7	7	OTP WD EXPIRE	_	_	_	_	_	OTP_WD_MAX_EXPIRE[2:0]		
A8	8	OTP WD COUNTER		OTP_WD_DL	IRATION[3:0]		OTP_WD_MAX_CNT [3:0]			
A9	9	OTP FAULT COUNTERS		OTP_FS_MA	X_CNT[3:0]		OTP_FAULT_MAX_CNT[3:0]			
AA	Α	OTP FAULT TIMERS	-	OTP_FS_OK_TIMER[2:0]				OTP_TIMER	r_FAULT[3:0]	
AB	В	OTP PWRDN DLY1	OTP_GRP4_DLY[1:0]	OTP_GRP3_DLY[1:0]			OTP_GRP2_DLY[1:0]	l	OTP_GRP1_DLY[1:0]	

Power management integrated circuit (PMIC) for high performance applications

MIRROR ADDR	FUSE ADDR	Register name	ВІТ7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	
AC	С	OTP PWRDN DLY2	OTP_PD_SEQ_DLY[1	:0]	_	_	_	_	OTP_RESETBMCU_	DLY[1:0]	
AD	D	OTP PWRUP CTRL	_	OTP_PWRDWN_ MODE	OTP_PGOOD_PDGR	RP[1:0]	OTP_RESETBMCU_	PDGRP[1:0]	OTP_SEQ_TBASE[1	OTP_SEQ_TBASE[1:0]	
AE	E	OTP RES ETBMCU PWRUP		OTP_RESETBMCU_SEQ[7:0]							
AF	F	OTP PGOOD PWRUP				OTP_PGOO	DD_SEQ[7:0]				
В0	10	OTP SW1 VOLT				OTP_V	SW1[7:0]				
B1	11	OTP SW1 PWRUP				OTP_SW	1_SEQ[7:0]				
B2	12	OTP SW1 CONFIG1	OTP_SW1U	JV_TH[1:0]	OTP_SW10	OV_TH[1:0]	OTP_SW1_	PDGRP[1:0]	OTP_SW	/1ILIM[1:0]	
В3	13	OTP SW1 CONFIG2	OTP_SW1_L	SELECT[1:0]		OTP_SW1PHASE[2:0]		_	OTP_SW1_PG_EN	_	
B4	14	OTP SW2 VOLT		OTP_VSW2[7:0]							
B5	15	OTP SW2 PWRUP		OTP_SW2_SEQ[7:0]							
B6	16	OTP SW2 CONFIG1	OTP_SW20	JV_TH[1:0]	OTP_SW20	OV_TH[1:0]	OTP_SW2_PDGRP[1:0]		OTP_SW2ILIM[1:0]		
B7	17	OTP SW2 CONFIG2	OTP_SW2_L	SELECT[1:0]		OTP_SW2PHASE[2:0]	l	_	OTP_SW2_PG_EN	_	
B8	18	OTP_OV_ BYPASS1	_	_	_	_	_	_	OTP_SW2_ OVBYPASS	OTP_SW1_ OVBYPASS	
B9	19	OTP_UV_ BYPASS1	_	_	_	_	_	_	OTP_SW2_ UVBYPASS	OTP_SW1_ UVBYPASS	
ВА	1A	OTP_ILIM_ BYPASS1	_	_	_	_	_	_	OTP_SW2_ ILIMBYPASS	OTP_SW1_ ILIMBYPASS	
BB	1B	OTP_PROG_ IDH	_	_	_	_	OTP_PROG_ID11	OTP_PROG_ID10	OTP_PROG_ID9	OTP_PROG_ID8	
ВС	1C	OTP_PROG_ IDL	OTP_PROG_ID7	OTP_PROG_ID6	OTP_PROG_ID5	OTP_PROG_ID4	OTP_PROG_ID3	OTP_PROG_ID2	OTP_PROG_ID1	OTP_PROG_ID0	
BD	1D	OTP DEBUG1	=	=	_	_	_	_	=	OTP_BGMON_ BYPASS	
BE	1E	OTP SW COMP1	_	_	OTP_SW2_GM_COMP[2:0] OTP_SW1_GM_COMP[2:0]			2:0]			
BF	1F	OTP SW RAMP	_	=	OTP_SW2DVS_RAMP[1:0] OTP_SW1DVS_RAMP[1:0]					/S_RAMP[1:0]	
C0	20	OTP_S0_ CRC_LSB	OTP_S0_CRC_LSB[7:0]								
C1	21	OTP_SO_ CRC_MSB	OTP_SO_CRC_MSB[7:0]								

Power management integrated circuit (PMIC) for high performance applications

17.2 PF5200 functional register map

RESET signals	
UVDET	Reset when VIN crosses UVDET threshold
OFF_OTP	Bits are loaded with OTP values (mirror register)
OFF_TOGGLE	Reset when device goes to OFF mode
SC	Self-clear after write

R/W types					
R	Read only				
R/W	Read and Write				
RW1C	Read, Write a 1 to clear				
R/SW	Read/Secure Write				
R/TW	Read/Write on TBB only				

Default	Default values			
1	bit set on reset			
0	bit cleared on reset			
х	unknown state			
F	loaded from OTP fuse			
Т	Hard coded			

ADDI	Register name	R/W	Default	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
00	DEVICE ID	R	0101_TTTT		DEVICE_	FAM[3:0]		DEVICE_ID[3:0]			
01	REV ID	R	TTTT_TTTT	FULL_LAYER_REV[3:0]				METAL_LAYER_REV[3:0]			
02	EMREV	R	FFFF_TTTT	PROG_ID[11:8]				— EMREV[2:0]			
03	PROG ID	R	FFFF_FFFF	PROG_ID[7:0]							
04	INT STATUS1	RW1C	0000_0000	SDWN_I	FREQ_RDY_I	CRC_I	PWRUP_I	PWRDN_I	_	PGOOD_I	VIN_OVLO_I
05	INT MASK1	R/W	1111_1011	SDWN_M	FREQ_RDY_M	CRC_M	PWRUP_M	PWRDN_M	_	PGOOD_M	VIN_OVLO_M
06	INT SENSE1	R	0000_00xx	_	_	_	_	_	_	PGOOD_S	VIN_OVLO_S
07	INT STATUS2	RW1C	0000_0000	_	FSYNC_FLT_I	THERM_155_I	THERM_140_I	THERM_125_I	THERM_110_I	THERM_95_I	_
08	INT MASK2	R/W	0111_1111	_	FSYNC_FLT_M	THERM_155_M	THERM_140_M	THERM_125_M	THERM_110_M	THERM_95_M	-
09	INT SENSE2	R	xxxx_xxxx	_	FSYNC_FLT_S	THERM_155_S	THERM_140_S	THERM_125_S	THERM_110_S	THERM_95_S	_
0A	SW MODE INT	RW1C	0000_0000	_	_	_	_	_	_	SW2_MODE_I	SW1_MODE_I
0В	SW MODE MASK	R/W	0100_1111	_	_	_	_	_	_	SW2_MODE_M	SW1_MODE_M
0C	SW ILIM INT	RW1C	0000_0000	_	_	_	_	_	_	SW2_ILIM_I	SW1_ILIM_I
0D	SW ILIM MASK	R/W	0100_1111	_	-	_	_	_	_	SW2_ILIM_M	SW1_ILIM_M
0E	SW ILIM SENSE	R	0x00_00xx	_	_	_	_	_	_	SW2_ILIM_S	SW1_ILIM_S
0F	SW UV INT	RW1C	0000_0000	_	_	_	_	_	_	SW2_UV_I	SW1_UV_I
10	SW UV MASK	R/W	0100_1111	_	_	_	_	_	_	SW2_UV_M	SW1_UV_M
11	SW UV SENSE	R	0x00_00xx	_	_	_	-	_	-	SW2_UV_S	SW1_UV_S
12	SW OV INT	RW1C	0000_0000	_	_	_	_	_	_	SW2_OV_I	SW1_OV_I
13	SW OV MASK	R/W	0100_0011	_	_	_	_	_	_	SW2_OV_M	SW1_OV_M
14	SW OV SENSE	R	0x00_00xx	_	Reserved	_	_	_	_	SW2_OV_S	SW1_OV_S
15	PWRON INT	RW1C	0000_0000	BGMON_I	PWRON_8S_I	PWRON_4S_I	PRON_3S_I	PWRON_2S_I	PWRON_1S_I	PWRON_REL_I	PWRON_PUSH_I
16	PWRON MASK	R/W	1111_1111	BGMON_M	PWRON_8S_M	PWRON_4S_M	PRON_3S_M	PWRON_2S_M	PWRON_1S_M	PWRON_REL_M	PWRON_PUSH_ M
17	PWRON SENSE	R	x000_000x	BGMON_S	_	_	_	_	_	_	PWRON_S
18											
19	SYS INT	R	0000_0000	EWARN_I	PWRON_I	OV_I	UV_I	ILIM_I	MODE_I	STATUS2_I	STATUS1_I
1A	HARDFAULT FLAGS	RW1C	0000_0000	_	_	_	_	PU_FAIL	WD_FAIL	REG_FAIL	TSD_FAIL
1B											
1C	ABIST PGOOD MON	R/SW	0000_0000	_	_	_	_	_	_	_	AB_PGOOD_ MON
1D	ABIST OV1	R/SW	0000_0000	_	_	_	_	_	_	AB_SW2_OV	AB_SW1_OV
1E	ABIST UV1	R/SW	0000_0000	_	_	_	-	_	_	AB_SW2_UV	AB_SW1_UV
1F	TEST FLAGS	R/TW	0000_0000	_	_	_	_	_	STEST_NOK	TRIM_NOK	OTP_NOK
20	ABIST RUN	R/SW	0000_0000	_	_	_	_	_	_	_	AB_RUN
21											
22	RANDOM GEN	R	xxxx_xxxx	RANDOM_GEN[7:0]							
23	RANDOM CHK	R/W	0000_0000				RANDOM	_CHK[7:0]			
24	VMONEN1	R/SW	0100_1111	_	_	_	_	_	_	SW2VMON_EN	SW1VMON_EN
25	CTRL1	R/SW	FFF1_FFFF	VIN_OVLO_EN	VIN_OVLO_ SDWN	_	TMP_MON_EN	WD_EN	_	_	I2C_SECURE_EN
26	CTRL2	R/W	FF01_0FFF	_		_	TMP_MON_AON	LPM_OFF	_	RUN_PG_GPO	
27	CTRL3	R/W	0010_0000	OV_D	B[1:0]	UV_D	B[1:0]	_	_	PMIC_OFF	_
28	PWRUP CTRL	R/W	OFFF_FFFF	PWRDWN_ MODE		PGOOD_PDGRP[1:0]		RESETBMCU_PDGRP[1:0]		SEQ_TBASE[1:0]	
29											

PF5200

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Power management integrated circuit (PMIC) for high performance applications

ADD	Register name	R/W	Default	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
2A	RESETBMCU PWRUP	R/W	FFFF_FFFF	RESETBMCU_SEQ[7:0]							
2B	PGOOD PWRUP	R/W	FFFF_FFFF	PGOOD_SEQ[7:0]							
2C	PWRDN DLY1	R/W	FFFF_FFFF	GRP4_DLY[1:0] GRP3_DLY[1:0]			GRP2_DLY[1:0] GRP1_DLY[DLY[1:0]	
2D	PWRDN DLY2	R/W	0000_00FF	_	_	_	_	- RESETBMCU_DLY[1:0]			CU_DLY[1:0]
2E	FREQ CTRL	R/W	FFFF_FFFF	SYNCOUT_EN	FSYNC_RANGE	FSS_EN	FSS_RANGE	CLK_FREQ[3:0]			
2F											
30	PWRON	R/W	000F_FFFF	=	_	=	PWRON_	DBNC[1:0] PWRON_RST_ TRESET[1:0] EN			
31	WD CONFIG	R/W	0000_FFFF	_	_	_	_	WD_DURATION[3:0]			
32	WD CLEAR	R/W1C	0000_0000	_	_	_	_	_	_	_	WD_CLEAR
33	WD EXPIRE	R/W	0FFF_0000	_	V	VD_MAX_EXPIRE[2:	0]	— WD_EXPIRE_CNT[2:0]			0]
34	WD COUNTER	R/W	FFFF_0000		WD_MAX_CNT[3:0]			WD_EVENT_CNT[3:0]			
35	FAULT COUNTER	R/W	FFFF_0000		FAULT_MA	X_CNT[3:0]		FAULT_CNT[3:0]			
36	FSAFE COUNTER	R/W	0000_0000	_	_	_	_	FS_CNT [3:0]			
37	FAULT TIMERS	R/W	0000_FFFF	_	_	_	_	TIMER_FAULT[3:0]			
38	AMUX	R/W	0000_0000	_	_	AMUX_EN		AMUX_SEL[4:0]			
39											
3A	SW RAMP	R/W	FFFF_FFFF	-	_	-	_	SW2DVS_RAMP[1:0] SW1DVS_RAMP[1			_RAMP[1:0]
3B	SW1 CONFIG1	R/W	FFF1_11FF	SW1_UV_ BYPASS	SW1_OV_ BYPASS	SW1_ILIM_ BYPASS	SW1_UV_STATE	SW1_OV_STATE	SW1_ILIM_ STATE	_	SW1_PG_EN
3C	SW1 CONFIG2	R/W	10FF_FFFF	SW1_FLT_REN	_	_	SW1IL	IM[1:0] SW1PHASE[2:0]			
3D	SW1 PWRUP	R/W	FFFF_FFFF				SW1_S	SEQ[7:0]			
3E	SW1 MODE	R/W	00FF_FFFF	_	_	SW1_PD	DGRP[1:0] — SW1_RUN			_MODE[1:0]	
3F	SW1 RUN VOLT	R/W	FFFF_FFFF	VSW1_RUN[7:0]							
41											
42											
43	SW2 CONFIG1	R/W	FFF1_11FF	SW2_UV_ BYPASS	SW2_OV_ BYPASS	SW2_ILIM_ BYPASS	SW2_UV_STATE	SW2_OV_STATE	SW2_ILIM_ STATE	-	SW2_PG_EN
44	SW2 CONFIG2	R/W	1FFF_FFFF	SW2_FLT_REN	_	_	SW2IL	IM[1:0]	SW2PHASE[2:0]		
45	SW2 PWRUP	R/W	FFFF_FFFF				SW2_S	SEQ[7:0]			
46	SW2 MODE1	R/W	00FF_FFFF	_	_	SW2_PD	SW2_PDGRP[1:0] —			SW2_RUN_MODE[1:0]	
47	SW2 RUN VOLT	R/W	FFFF_FFFF	VSW2_RUN[7:0]							
53	PAGE SELECT	R/TW	0000_0000	_	_	-	_	— PAGE[2:0]			

Power management integrated circuit (PMIC) for high performance applications

18 OTP/TBB mode

The PF5200 configuration is using OTP fuses.

VDDOTP pin is set high to burn the OTP fuses (see <u>Section 18.2 "OTP fuse programming"</u>). In all other cases, VDDOTP shall be tied to GND.

At startup, when VDDOTP is set to GND:

- In the first stage, the fuses are loaded in the OTP mirror registers each time VIN crosses the UVDET threshold in the rising edge.
- At the second stage, the data from the mirror registers are loaded into the functional I2C registers for device operation.
- The mirror registers can be modified during the TBB mode in order to test a custom power up configuration and/or burn the configuration into the OTP fuses to generate a customized default power up configuration.

In the event of a TRIM/OTP loading failure or a self-test failure, the corresponding fault flag is set and any PWRUP event is ignored until the flags are cleared by writing a 1 during the QPU OFF state.

The TRIM_NOK, OTP_NOK and STEST_NOK flags can only be written when the TBBEN = V1P5D (in TBB mode). In normal operation, the TRIM_NOK, OTP_NOK and STEST_NOK flags can only be read, but not cleared.

18.1 TBB (Try Before Buy) operation

The PF5200 allows temporary configuration (TBB) to debug or test a customized power up configuration in the system. In order to access the TBB mode, the TBBEN pin shall be pulled up to V1P5D.

In this mode of operation, the device ignores the default value of the LPM_OFF bit and moves into the QPU_Off state, regardless of the result of the self-test. However, the actual result of the self-test is notified by the STEST_NOK flag.

- When the self-test is successful the STEST_NOK flag is set to 0.
- When the self-test has failed, the STEST_NOK flag is set to 1.

In the TBB mode, the following conditions are valid:

- I²C communication uses standard communication with no CRC and secure write disabled.
- Default I²C address is 0x08 regardless of the address configured by OTP.
- · Watchdog monitoring is disabled (including internal watchdog timer).
- The PF5200 can communicate through I²C as long as V_{DDIO} is provided to the PMIC externally.

When the device is in the TBB mode, it can access the mirror registers in the **extended register Page 1, set in PAGE[2:0]**. With the TBBEN pin pulled low, access to the extended register pages is not allowed.

The mirror registers are preloaded with the values form the OTP configuration. These may be modified to set the proper power up configuration during TBB operation.

If a power-up event occurs when the TBBEN pin is pulled high (e.g. V1P5D), the device powers up with the configuration from mirror registers.

In order to allow TBB operation with full functionality, the TBBEN pin must be low when the power-up event occurs.

The PF5200 can operate normally using the TBB configuration, as long as VIN does not go below the UVDET threshold. If VIN is lost (VIN < UVDET) the mirror register will be reset and TBB configuration must be performed again.

Power management integrated circuit (PMIC) for high performance applications

18.2 OTP fuse programming

A permanent OTP configuration is possible by burning the OTP fuses. OTP fuse burning is performed in the TBBEN mode during the QPU_Off state. Contact your NXP representative for detailed information on OTP fuse programming.

Power management integrated circuit (PMIC) for high performance applications

19 Functional safety

19.1 System safety strategy

The PF5200 is defined in a context of safety and shall provide a set of features to achieve the safety goals on such context. It provides a flexible yet complete safety architecture to comply with ASIL B systems providing full programmability to enable or disable features to address the safety goal. This architecture includes protective mechanisms to avoid unwanted modification on the respective safety features, as required by the system.

The following are features considered to be critical for the functional safety strategy:

- · Internal watchdog timer
- · Output voltage monitoring with dedicated bandgap reference
- Protected I²C protocol with CRC verification
- Input overvoltage protection
- · Analog built-in self-test (ABIST)

19.2 Bandgap reference voltage monitoring

The OV/UV monitor operates from the same reference as the regulator. To ensure the integrity of the buck regulators, a comparison between the regulator bandgap (BG1) and the monitoring bandgap (BG2) is performed. A 5 % to 12 % difference between the two bandgaps is an indicator of a potential regulation or monitoring fault and is considered as a critical issue. Therefore, the device prevents the switching regulators from powering up.

On the PF5200 ASIL B device, if a bandgap error is detected during a power up event, the self-test will fail and prevent the device from powering up regardless of the value of the OTP_BGMON_BYPASS bit.

During system On state, if a drift between two bandgaps is detected:

- When OTP_BGMON_BYPASS = 0, the power stage of the voltage regulators will be shutdown.
- When OTP_BGMON_BYPASS = 1, The bandgap monitor only sends an interrupt to the system to announce the bandgap failure.

The BGMON_I is asserted when a bandgap failure occurs, provided it is not masked.

The BGMON_S bit is set to 0 when the bandgaps are within range, and set to 1 when the bandgaps are out of range.

19.3 ABIST verification

The PF5200 ASIL B implements an ABIST verification of all output voltage monitors as well as PGOOD pin. The ABIST verification on the output voltage monitoring behaves as follows:

- · Device tests the OV comparators for each individual SWx supply during the self-test routine
- Device tests the UV comparators for each individual SWx supply during the self-test routine
- During the ABIST verification, it is required to ensure the corresponding OV/UV comparators are able to toggle, which in turn is a sign of the integrity of these functions
- If any of the comparators is not able to toggle, a warning bit is set on the I²C register map.
 - The ABIST OV1 register contains the AB SWx OV bits for all external regulators.
 - The ABIST UV1 register contains the AB SWx UV bits for all external regulators.
- The ABIST registers are cleared or overwritten each time the ABIST check is performed.
- The ABIST registers are part of the secure registers and will require an I²C secure write to be cleared if this
 feature is enabled.

Power management integrated circuit (PMIC) for high performance applications

Once ABIST check is performed, the PF5200 can proceed with the power up sequence and the MCU should be able to request the value of these registers and learn if ABIST failed for any of the voltage monitors.

The AB RUN bit is provided to perform an ABIST verification on demand.

When the AB_RUN bit is set to 1, the control logic perform an ABIST verification on all OV/UV monitoring circuits. When the ABIST verification is finished, the AB_RUN bit self-clear to 0 and a new ABIST verification can be commanded as needed.

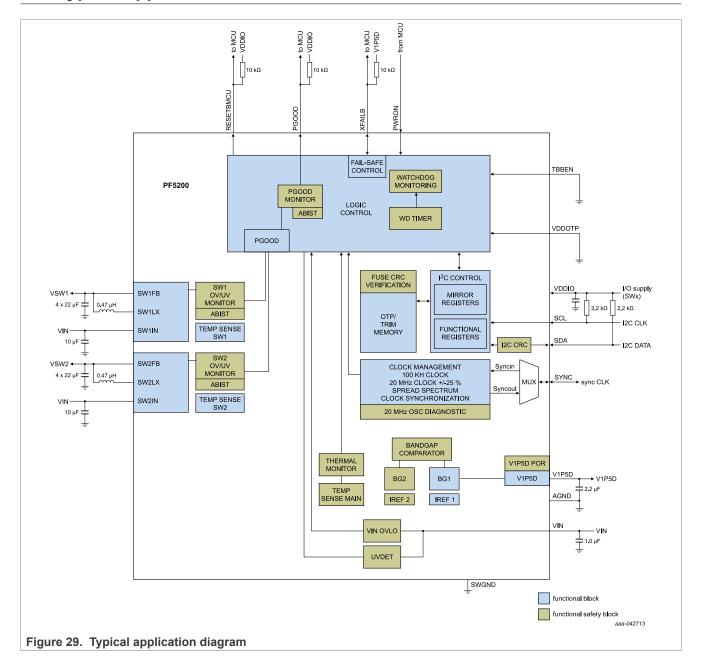
When the secure write feature is enabled, the system must perform a secure write sequence in order to start an ABIST verification on demand.

When the PF5200 performs an ABIST verification on demand, the OV/UV fault monitoring is blanked for a maximum period of 200 µs. During this time, the system must ensure it is in a safe state, or it is safe to perform this action without violating the safety goals of the system.

If a failure on the OV/UV monitor is detected during the ABIST on demand request, the PMIC will assert the corresponding ABIST flags. It is responsibility of the system to perform a diagnostic check after each ABIST verification to ensure it places the system in safe state if an ABIST fault is detected.

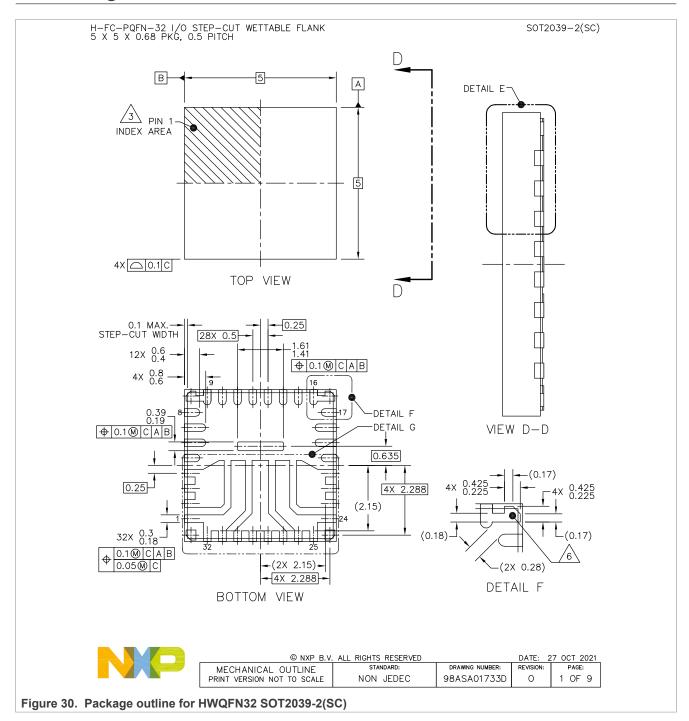
Power management integrated circuit (PMIC) for high performance applications

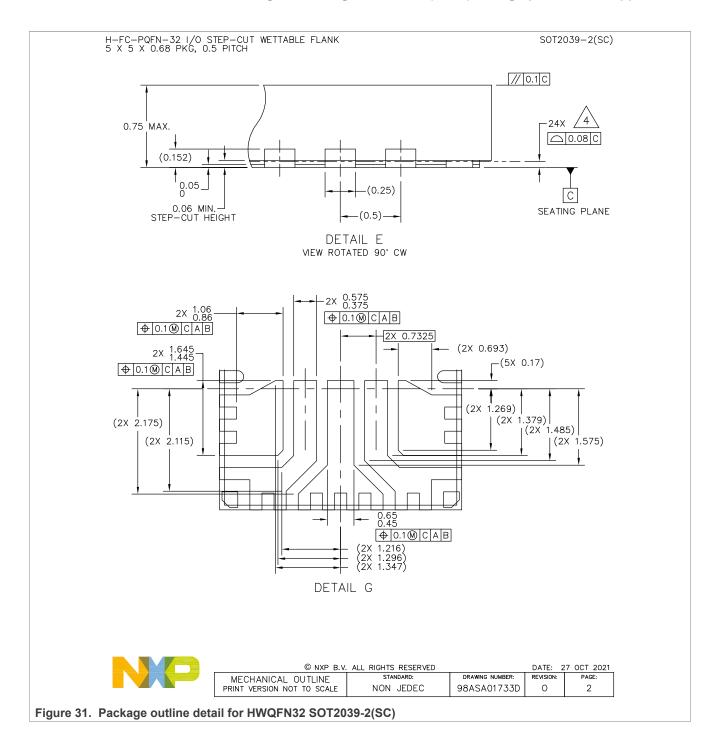
20 IC level quiescent current requirements

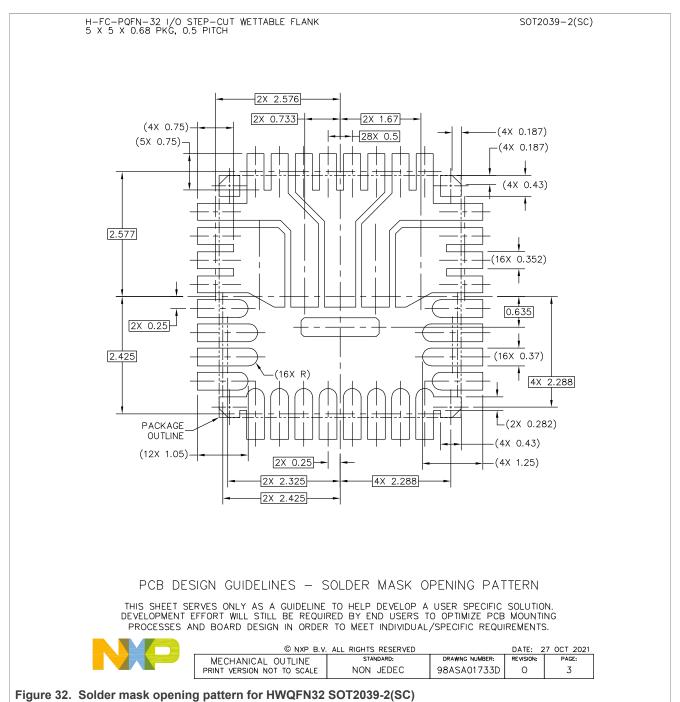

Table 50. Quiescent current requirements

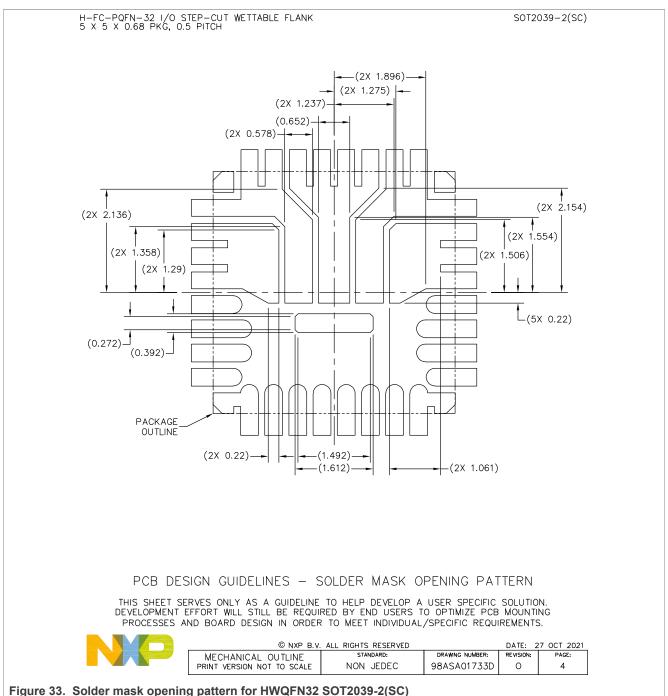
All parameters are specified at T_A = -40 to 125 °C, unless otherwise noted. Typical values are characterized at V_{IN} = 5.0 V and T_A = 25 °C, unless otherwise noted.

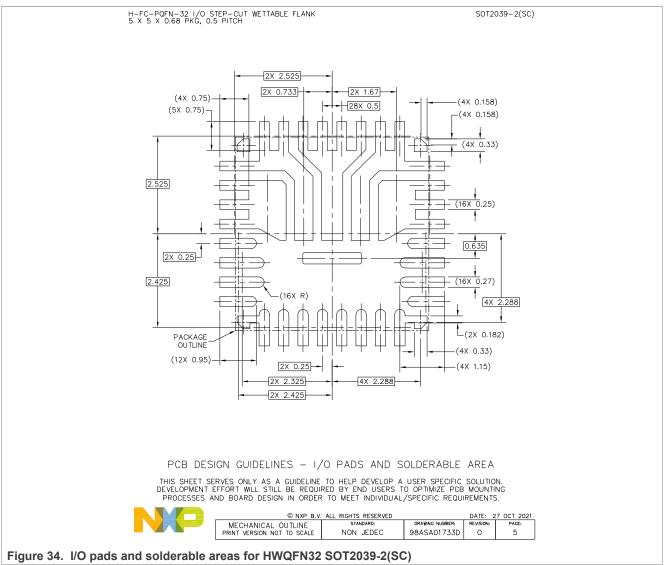
Symbol	Parameter	Min	Тур	Max	Unit
I _{LPOFF}	LP_Off state LPM_OFF = 0 VIN > UVDET	_	40	150	μΑ
IQPUOFF	QPU_Off LPM_OFF = 1 System ready to power on	_	450	1000	μΑ
Isyson	System On core current Run and all regulators disabled Coin cell charger disabled AMUX disabled	_	450	1000	μΑ
IFSAFE	Fail-safe mode VIN > UVDET	_	40	150	μΑ

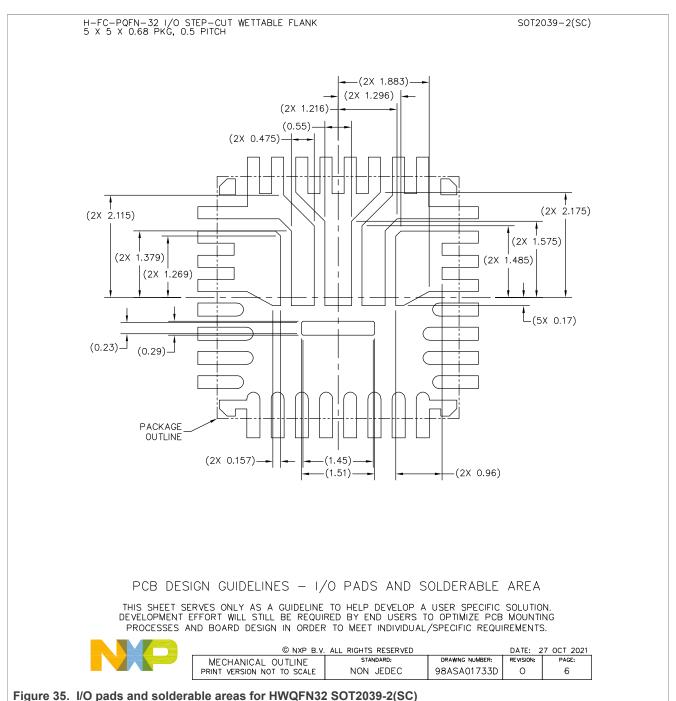

Power management integrated circuit (PMIC) for high performance applications

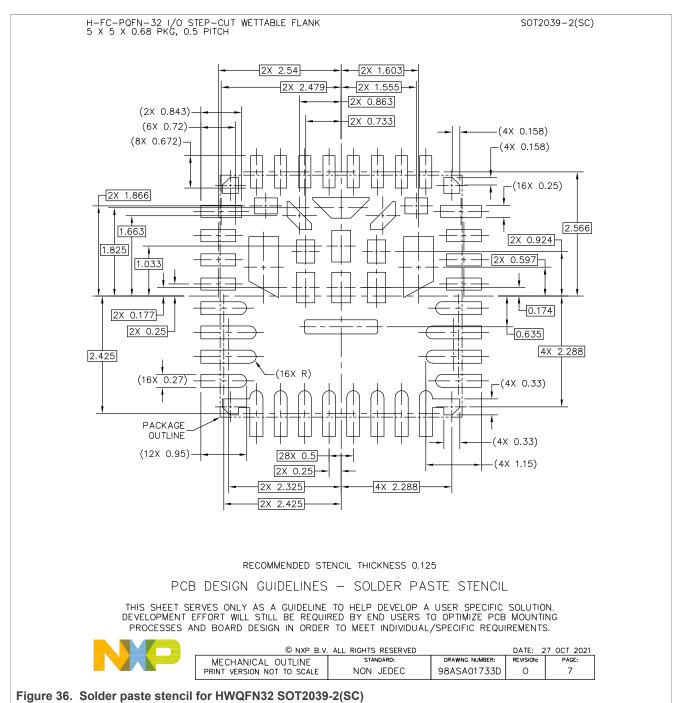

21 Typical applications

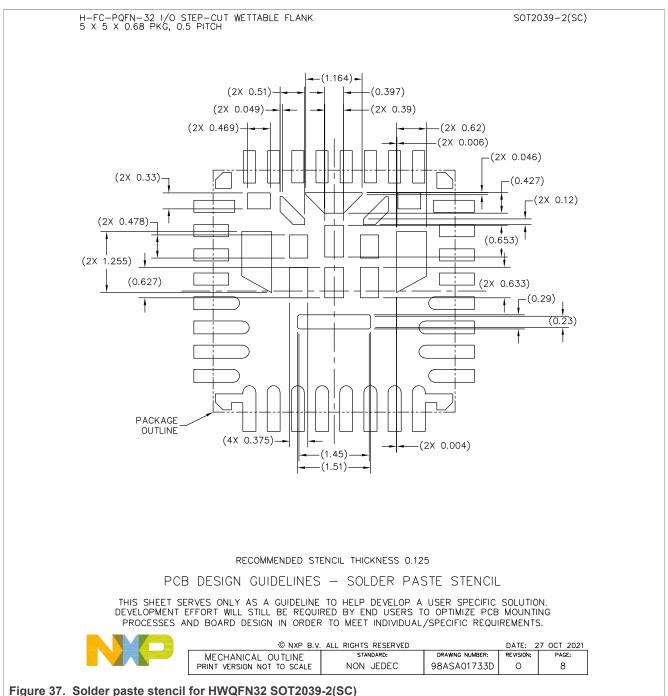



Power management integrated circuit (PMIC) for high performance applications


22 Package outline







. 19410 001 110 pade and 0014014010 and 101 1111 4: 1102 00 12000 2(00

Power management integrated circuit (PMIC) for high performance applications

H-FC-PQFN-32 I/O STEP-CUT WETTABLE FLANK 5 X 5 X 0.68 PKG, 0.5 PITCH

SOT2039-2(SC)

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

3. PIN 1 FEATURE, SHAPE, SIZE AND LOCATION MAY VARY.
4. COPLANARITY APPLIES TO LEADS AND DIE ATTACH PAD.

_____ 5. MIN. METAL GAP FOR LEAD TO EXPOSED PAD SHALL BE 0.2 MM.

6. ANCHORING PADS.

© NXP B.V.	DATE: 2	7 OCT 2021		
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON JEDEC	98ASA01733D	0	9

Figure 38. Package outline notes for HWQFN32 SOT2039-2(SC)

PF5200

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Power management integrated circuit (PMIC) for high performance applications

23 Revision history

Table 51. Revision history

Document ID	Release date	Description
PF5200 v.3.2	20 February 2024	CIN# 202402004I Section 4: added statement regarding OTP emulation and programming Updated legal disclaimers, adding NXP B.V. is not an operating company Company
PF5200 v.3.1	21 April 2023	CIN# 202304025I Table 2: corrected typos in entries for added parts MPF5200AMMG2ES and MPF5200AMMG3ES
PF5200 v.3	14 February 2023	<u>Table 2</u> : added parts MPF5200AMMG2ES and MPF5200AMMG3ES
PF5200 v.2	30 November 2021	Global: deleted Company Confidential
PF5200 v.1.1	23 November 2021	<u>Section 22</u> : updated package revision to O (production version)
PF5200 v.1	19 October 2021	Initial version of product data sheet

Power management integrated circuit (PMIC) for high performance applications

Legal information

Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL https://www.nxp.com.

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

PF5200

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Power management integrated circuit (PMIC) for high performance applications

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

Suitability for use in automotive applications (functional safety) This NXP product has been qualified for use in automotive applications. It has been developed in accordance with ISO 26262, and has been ASIL classified accordingly. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as "Critical Applications"), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys' fees) that NXP may incur related to customer's incorporation of any product in a Critical Application.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

 $\ensuremath{\mathsf{NXP}}$ — wordmark and logo are trademarks of NXP B.V.

12C-bus - logo is a trademark of NXP B.V.

SafeAssure — logo is a trademark of NXP B.V.

Power management integrated circuit (PMIC) for high performance applications

Tables

Tab. 1.	Device options	4	Tab. 26.	TRESET configuration	38
Tab. 2.	Ordering information	4	Tab. 27.	I2C address configuration	43
Tab. 3.	Pin description		Tab. 28.	Secure bits	
Tab. 4.	Absolute maximum ratings	9	Tab. 29.	Internal supplies electrical characteristics	45
Tab. 5.	Connection of unused pins	10	Tab. 30.	SWx ramp rates	
Tab. 6.	ESD ratings		Tab. 31.	SWx output voltage configuration	47
Tab. 7.	Thermal characteristics	12	Tab. 32.	SWx regulator mode configuration	47
Tab. 8.	QFN32 thermal resistance and package		Tab. 33.	SWx current limit selection	
	dissipation ratings	12	Tab. 34.	SWx phase configuration	47
Tab. 9.	Operating conditions		Tab. 35.	SWx inductor selection bits	48
Tab. 10.	Voltage supply summary		Tab. 36.	OTP_SW1CONFIG register description	48
Tab. 11.	Device differences		Tab. 37.	Buck regulator electrical characteristics	48
Tab. 12.	State machine transition definition	18	Tab. 38.	Recommended external components	50
Tab. 13.	Fail-safe OK timer configuration	23	Tab. 39.	UV threshold configuration	50
Tab. 14.	UVDET threshold	24	Tab. 40.	OV threshold configuration	50
Tab. 15.	VIN_OVLO specifications	24	Tab. 41.	UV debounce timer configuration	50
Tab. 16.	Startup timing requirements (PWRON		Tab. 42.	OV debounce timer configuration	51
	pulled up)	25	Tab. 43.	VMON electrical characteristics	51
Tab. 17.	Power up time base configuration	26	Tab. 44.	Manual frequency tuning configuration	54
Tab. 18.	Power up sequence configuration	27	Tab. 45.	Clock management specifications	56
Tab. 19.	Power down delay selection	28	Tab. 46.	Thermal monitor specifications	58
Tab. 20.	Regulator control during fault event bits	29	Tab. 47.	Thermal monitor bit description	59
Tab. 21.	Fault timer configuration	31	Tab. 48.	AMUX channel selection	59
Tab. 22.	Fault bypass bits	32	Tab. 49.	Watchdog duration configuration	60
Tab. 23.	Interrupt registers	36	Tab. 50.	Quiescent current requirements	72
Tab. 24.	I/O electrical specifications	37	Tab. 51.	Revision history	83
Tab. 25.	PWRON debounce configuration in edge			•	
	detection mode	38			

Power management integrated circuit (PMIC) for high performance applications

Figures

Fig. 1.	Simplified application diagram3	Fig. 20
Fig. 2.	Internal block diagram6	Fig. 21
Fig. 3.	Pin configuration for 32-pin PQFN	Fig. 22
	(package top view)7	Fig. 23
Fig. 4.	Functional block diagram14	Fig. 24
Fig. 5.	State diagram17	Fig. 25
Fig. 6.	Startup with PWRON pulled up25	Fig. 26
Fig. 7.	Startup with PWRON driven high externally	Fig. 27
J	and bit LPM_OFF = 025	Fig. 28
Fig. 8.	Power up/down sequence between Off and	Fig. 29
J	system On state27	Fig. 30
Fig. 9.	Power down delay29	3
Fig. 10.	Regulator turned off upon with SWX_	Fig. 31
	STATE = 0 and FLT_REN = 030	
Fig. 11.	Regulator turned off upon with SWX_	Fig. 32
3	STATE = 0 and FLT_REN = 131	3
Fig. 12.	Correct power up (no fault during power	Fig. 33
g	up)	g
Fig. 13.	Power up sequencer with a temporary	Fig. 34
5	failure34	3
Fig. 14.	Power up sequencer aborted as fault	Fig. 35
	persists for longer than 2.0 ms35	
Fig. 15.	I/O interface diagram37	Fig. 36
Fig. 16.	XFAILB behavior during a power up	g. 00
g	sequence41	Fig. 37
Fig. 17.	XFAILB behavior during a power down	g
g	sequence41	Fig. 38
Fig. 18.	Behavior during an external XFAILB event42	g. 00
Fig. 19.	External XFAILB event during a power up	
. 19. 10.	sequence42	

Fig. 20.	8 bit SAE J1850 CRC polynomial	44
Fig. 21.	Buck regulator block diagram	
Fig. 22.	Voltage monitoring architecture	51
Fig. 23.	Clock management architecture	53
Fig. 24.	Spread-spectrum waveforms	
Fig. 25.	Thermal monitoring architecture	58
Fig. 26.	Watchdog timer operation	
Fig. 27.	Hard WD reset behavior	
Fig. 28.	Watchdog event counter	63
Fig. 29.	Typical application diagram	73
Fig. 30.	Package outline for HWQFN32	
	SOT2039-2(SC)	74
Fig. 31.	Package outline detail for HWQFN32	
	SOT2039-2(SC)	75
Fig. 32.	Solder mask opening pattern for	
	HWQFN32 SOT2039-2(SC)	76
Fig. 33.	Solder mask opening pattern for	
	HWQFN32 SOT2039-2(SC)	77
Fig. 34.	I/O pads and solderable areas for	
	HWQFN32 SOT2039-2(SC)	78
Fig. 35.	I/O pads and solderable areas for	
	HWQFN32 SOT2039-2(SC)	79
Fig. 36.	Solder paste stencil for HWQFN32	
	SOT2039-2(SC)	80
Fig. 37.	Solder paste stencil for HWQFN32	
	SOT2039-2(SC)	81
Fig. 38.	Package outline notes for HWQFN32	
	SOT2039-2(SC)	82

Power management integrated circuit (PMIC) for high performance applications

Contents

1	Overview	1	15.9.3	PGOOD	39
2	Features	2	15.9.4	TBBEN	40
3	Simplified application diagram	3	15.9.5	XFAILB	40
4	Ordering information	4	15.9.6	SDA and SCL (I2C bus)	43
5	Applications	5	15.9.6.1	I2C CRC verification	43
6	Internal block diagram	6	15.9.6.2	I2C secure write	44
7	Pinning information	7	16	Functional blocks	4
7.1	Pinning	7	16.1	Analog core and internal voltage references .	45
7.2	Pin description	7	16.2	Buck regulators (SWx)	45
8	Absolute maximum ratings	9	16.3	Multiphase operation	48
9	Connection of unused pins	10	16.4	Electrical characteristics	48
10	ESD ratings	11	16.5	Voltage monitoring	50
11	Thermal characteristics		16.5.1	Electrical characteristics	
12	Operating conditions	13	16.6	Clock management	52
13	General description	14	16.6.1	Low frequency clock	53
13.1	Features	14	16.6.2	High frequency clock	53
13.2	Functional block diagram	14	16.6.3	Manual frequency tuning	53
13.3	Power tree summary	15	16.6.4	Spread-spectrum	54
13.4	Device differences	15	16.6.5	Clock synchronization	5
14	State machine	16	16.7	Thermal monitoring	57
14.1	State descriptions	20	16.8	Analog multiplexer	59
14.1.1	OTP/TRIM load	20	16.9	Watchdog event management	60
14.1.2	LP_Off state	20	16.9.1	Internal watchdog timer	60
14.1.3	Self-test routine (PF5200 ASIL B only)	20	16.9.2	Watchdog reset behaviors	6
14.1.4	QPU_Off state	21	17	I2C register map	64
14.1.5	Power up sequence	21	17.1	PF5200 OTP mirror register map	64
14.1.6	System On state		17.2	PF5200 functional register map	
14.1.6.1	Run state	21	18	OTP/TBB mode	68
14.1.7	WD_Reset	22	18.1	TBB (Try Before Buy) operation	
14.1.8	Power down state	22	18.2	OTP fuse programming	
14.1.9	Fail-safe transition		19	Functional safety	
14.1.10	Fail-safe state (PF5200 ASIL B only)		19.1	System safety strategy	
15	General device operation		19.2	Bandgap reference voltage monitoring	
15.1	UVDET		19.3	ABIST verification	
15.2	VIN OVLO condition	24	20	IC level quiescent current requirements	
15.3	IC startup timing with PWRON pulled up to		21	Typical applications	
	VIN	24	22	Package outline	
15.4	IC startup timing with PWRON pulled low		23	Revision history	
	during VIN application			Legal information	84
15.5	Power up				
15.5.1	Power up events				
15.5.2	Power up sequencing				
15.6	Power down				
15.6.1	Turn off events				
15.6.2	Power down sequencing				
15.6.2.1	Sequential power down				
15.6.2.2	Power down delay				
15.7	Fault detection				
15.7.1	Fault monitoring during power up state				
15.8	Interrupt management				
15.9	I/O interface pins				
15.9.1	PWRON				
15.9.2	RESETBMCU	ა9			

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.