

MT6370 Power Management IC Product Brief

Version: 1.0 Release date: 202

2023-09-19

The full datasheet is available with an NDA

Use of this document and any information contained therein is subject to the terms and conditions set forth in Exhibit 1. This document is subject to change without notice.

Version History

Version	Date	Description
1.0	2023-09-19	Official release

Table of Contents

Vers	ion H	istory ·····2
Tabl	e of C	Contents ······3
List	of Fig	ures3
List	of Tab	oles3
1		rview4
		Features4
	1.2	Applications
	1.3	General Descriptions 6
	1.4	Ordering Information 7
	1.5	Pin Assignments and Descriptions7
2	Elec	trical Characteristics ·······11
	2.1	Absolute Maximum Ratings 11
	2.2	Recommended Operating Range 11
	2.3	Electrical Characteristics
3	Турі	cal Operating Characteristics23
	3.1	Typical Operating Characteristics 23
4	MT6	370 Packaging ······27
	4.1	Outline Dimensions 27
Exhi	bit 1	Terms and Conditions

List of Figures

Figure 1-1. Ordering information	7
Figure 1-2. MT6370 WL-CSP-93B 4.22x4.32 (BSC) (top view)	7
Figure 3-1. Typical operating characteristics	···26
Figure 4-1. Package dimension	···27

List of Tables

Table 1-1. MT6370 pin descriptions	8
Table 2-1. Electrical specifications	··12

1 Overview

1.1 Features

• Battery Charger

- High-Accuracy Voltage/Current Regulation
- Average Input Current Regulation (AICR) : 0.1A to 3.25A in 50mA steps
- Charge Current Regulation Accuracy : ±7%
- Charge Voltage Regulation Accuracy : ±0.5% (0 to 70°C)
- Battery Temperature Sensing
- Synchronous 1.5Mz Frequency PWM Controller with Up to 95% Duty Cycle
- Thermal Regulation and Protection
- Over-Temperature Protection
- Input Over-Voltage Protection
- $\,-\,$ IRQ Output for Communication via I^2C
- Automatic Charging
- BATFET Control to Support Ship Mode, Wake Up, and Full System Reset
- Resistance Compensation from Charger Output to Cell Terminal
- USB OTG Output Voltage Range : 4.425V to 5.825V
- D+/D- Detection for BC1.2
- Integrated ADCs for System Monitoring (Charger Current, Voltage, and Temperature)
- JEITA Thermal Comparator Accuracy ±1% VTS
- Low Battery Protection from 2.3V to 3.8V for Boost Operation
- Initial VOREG Set for Relieve Battery Protection
- External OVP MOSFET Driving for Higher Surge Application, Up to AMR 28V
- USB_PD
 - PD-Compatible Dual-Role
 - Attach/Detach Detection as Host, Device or Dual-Role Port
 - Current Capability Definition and Detection
 - Cable Recognition
 - Alternate Mode Supported
 - Supports VCONN with Programmable Over-Current Protection (OCP)
 - Dead Battery Support
 - Ultra-Low Power Mode for Attach Detection (<10mA)
 - BIST Mode Supported
 - USB PD3.0
- Backlight WLED Driver
 - Drives up to 4 Strings of 8 series WLEDs
 - External PWM Pin and I2C-Controlled with Programmable 11 bits of Linear and Exponential Brightness
 - I2C-Programmable Over-Voltage Protection (OVP) Threshold
 - Supports Torch Mode and Strobe Mode for Front Cameras

- Auto Switch Frequency Mode (500kHz, 1MHz)
- Four Over-Voltage Protection Thresholds (17V, 21V, 25V, and 29V)
- Four Over-Current Protection Thresholds (900mA, 1200mA, 1500mA, and 1800mA)
- Front-Facing Flash with 300% Brightness for Selfshot
- Flash LED Driver
 - Synchronous Boost Dual Flash LED Driver with Dual Independently-Programmable LED Current Sources
 - Torch Mode Current : from 25mA to 400mA in 12.5mA Steps per Channel
 - I²C-Programmable Flash Safety Timer, from 64ms to 2432ms with 32ms/Step
 - Flash LED1/LED2 Short-Circuit Protection, and Output Short-Circuit Protection
 - TXMask Protection with dedicated FL_TXMASK Pin
 - Shared Charger/OTG as Power Stage
 - Independent Torch Bypass MOSFET from VSYS
 - Strobe Mode Current : 50mA to 1.5A in 12.5mA Steps or 25mA to 750mA in 6.25mA Steps per Channel, and Up to 2.5A in Total
- **Display Bias Driver**
 - I2C-Programmable Output Voltages
 - Flexible Output Voltages (VDB_BST, VDB_POS, VDB_NEG) Setting
 - Boost Converter Output Voltage (VDB_BST) Range : 4V to 6.2V, 50mV/Step
 - Positive Voltage Output (VDB_POS) Range : 4V to 6V, 50mV/Step
 - Negative Voltage Output (VDB_NEG) Range : -4V to -6V, 50mV/Step
 - Selectable Output Mode (Fast Discharge or Float) when Positive/Negative Voltage Output Disabled
 - External Independent Positive/Negative Enable Control
 - True Load Disconnect, Over-Current Protection, and Positive/Negative Short-Circuit Protection Function
 - Output Current : 80mA
 - Power-Saving by Periodic Mode
- LDO
 - Output Voltage Range : 1.6V to 4V, 200mV/Step
 - Output Current : 400mA
 - High PSRR and Low Dropout LDO
- **RGB LED Driver**
 - 4-Channel LED Driver
 - Sink Current for 3 RGB LEDs : 24mA/Channel in 4mA Steps
 - PWM Dimming Frequency Range : 0.1Hz to 1kHz
 - RGB ISINK4 for CHG VIN Power Good Indicator
 - Support Register Mode, PWM Mode, and Breath Mode

1.2 Applications

- Cellular Telephones
- Personal Information Appliances
- Tablet PCs
- Portable Instruments
- Industrial HMI, desktop POS, KIOSK, digital signage

1.3 General Descriptions

The MT6370 is a highly-integrated smart power management IC, which includes a single cell Li-Ion/Li-Polymer switching battery charger, a USB Type-C & Power Delivery (PD) controller, dual Flash LED current sources, a RGB LED driver, a backlight WLED driver, a display bias driver and a general LDO for portable devices.

The switching charger integrates a synchronous PWM controller, power MOSFETs, input current sensing and input current regulation, high-accuracy voltage regulation, and charge termination circuitry. Besides, the charge current is regulated through the integrated sensing resistors. It also features USB On-The-Go (OTG) support.

The USB Type-C & PD controller complies with the latest USB Type-C and PD standards. It integrates a complete Type-C transceiver including the Type-C termination resistors, Rp and Rd, and enables the USB Type-C detection including attach and orientation. It also integrates the physical layer of the USB BMC power delivery protocol, allowing power transfers and role swaps. The BMC PD function provides full support for alternate modes on the USB Type-C standard.

Dual independent current sources supply for each flash LED. The power for the current sources in strobe mode are from the CHG_VMID pin, which is supplied from the charger in reverse boost mode, the same operation as OTG mode of the charger. The high-side current sources, allowing for grounded-cathode connection for LEDs, provide strobe mode current levels from 25mA to 1.5A in a 12.5 mA step or from 25mA to 750mA in a 6.25mA step and torch mode current levels from 25mA to 400mA in a 12.5mA step. The two channels can support totally up to 2.5A.

The backlight WLED driver supports up to a 29V output voltage for 4 channels of 8 series WLEDs. Each channel supports up to 30mA of current capability with 2048 current steps in exponential or linear mapping curves. The backlight brightness is controlled by the I²C interface and an external PWM control. The PWM frequency range is from 50Hz to 50kHz. The MT6370 can also support torch/strobe backlight modes with regulated constant current for front camera screen flash applications.

The display bias driver (DB) is implemented with a single-inductor boost and an inverting charge pump to achieve a smaller PCB area, compared with a dual-inductor boost converter. The display bias driver is used to provide a negative voltage output (VDB_NEG) through the DB_NEGVOUT pin and a positive voltage output (VDB_POS) through the DB_POSVOUT pin. The negative voltage output comes from the boost converter output voltage (VDB_BST) at the DB_BSTVOUT pin, and the positive voltage output is from the DB_POSVOUT voltage passing through an LDO to reduce power noise. The VDB_POS and VDB_NEG voltage ranges can be programmed from 4V to 6V and from -4V to -6V with a resolution of 50mV, respectively. These two output rails, usually connected to a Source Driver IC, can support up to 50mA output current capability to drive up to 10" TFT-LCD panels.

The LDO can be used to supply power to an Eccentric Rotating Mass (ERM) Motor in mobile phones and other hand-held devices. The output voltage is programmable in the range of 1.6V to 4V via the I²C interface.

The RGB LED driver is a 4-Channel smart LED string controller to drive 3 channels of LEDs with a sink current of up to 24mA and a CHG_VIN power good indicator with a sink current of up to 6mA. All channels can be set independently via the I²C interface, and are provided with three operation modes: Register Mode, PWM Mode and Breath Mode.

The MT6370 is available in a WL-CSP-93B 4.22x4.32 (BSC) package.

1.4 **Ordering Information**

MT6370 🗖

Package Type P:WL-CSP-93B 4.22x4.32 (BSC)

Figure 1-1. Ordering information

Pin Assignments and Descriptions 1.5

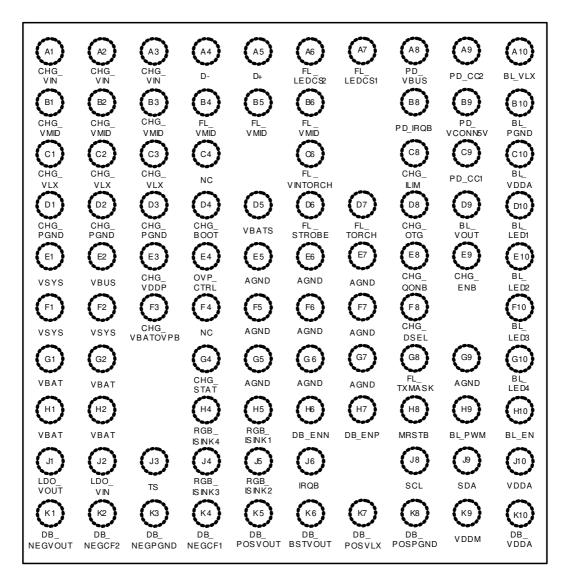


Figure 1-2. MT6370 WL-CSP-93B 4.22x4.32 (BSC) (top view)

Pin No.	Pin Name	Pin Description
A1, A2, A3	CHG_VIN	Charger power input.
A4	D-	USB D- port.
A5	D+	USB D+ port.
A6 FL_LEDCS2		High-side current source output 2 for flash LED2.
A7	FL LEDCS1	High-side current source output 1 for flash LED1.
A8	PD_VBUS	VBUS input for attach and detach detection when the device operates as an UFP port.
A9	PD_CC2	Type-C connector Configuration Channel (CC) 2, used to detect a cable plug event and determine the cable orientation.
A10	BL_VLX	Backlight boost converter switch node. Connect a 10µH inductor between BL_VLX and VSYS.
B1, B2, B3	CHG_VMID	Connection point between the reverse-blocking MOSFET and the high-side switching MOSFET.
B4, B5, B6	FL_VMID	Flash LED driver power input for strobe mode. Connect a 4.7µF ceramic capacitor between FL_VMID and ground.
B8	PD_IRQB	Interrupt output, active-low open-drain, to request the processor to check the registers.
B9	PD_VCONN5V	Regulated input voltage to power PD_CC pins as VCONN.
B10	BL_PGND	Backlight ground. Tie BL_PGND and ground on the PCB.
C1, C2, C3	CHG_VLX	Charger switch node for output inductor connection.
C4	NC	No internal connection.
C6	FL_VINTORCH	Flash LED driver power input for torch mode.
C8 CHG_ILIM		Input current limit setting pin. A resistor is connected from CHG_ILIM pin to ground to set the maximum input current limit. The actual input current limit is the lower value set through the CHG_ILIM pin and IAICR register bits.
C9	PD_CC1	Type-C connector Configuration Channel (CC) 1, used to detect a cable plug event and determine the cable orientation.
C10	BL_VDDA	Backlight analog power supply. Connect a 1µF ceramic capacitor between BL_VDDA and ground.
D1, D2, D3	CHG_PGND	Charger ground. Tie CHG_PGND and ground on the PCB.
D4	CHG_BOOT	Charger bootstrap voltage to supply the high-side MOSFET gate driver. Connect a capacitor between CHG_BOOT and CHG_VLX.
D5	VBATS	Battery voltage-sense input.
D6	FL_STROBE	Flash LED Strobe mode enable input.
D7	FL_TORCH	Flash LED Torch mode enable input.
D8	CHG_OTG	OTG boost mode enable control, active-high. Act with OTG_Pin_EN (0x11[1]).
D9	BL_VOUT	Backlight output voltage.
D10	BL_LED1	Backlight current regulator output 1.
E1, F1, F2	VSYS	System connection node. Internal BATFET is connected between VSYS and VBAT. Connect a 22µF ceramic capacitor between VSYS and ground.
E2	VBUS	VBUS input voltage for over-voltage protection detection.
E3	CHG_VDDP	 Regulated output voltage to supply for the PWM low-side gate driver and the bootstrap capacitor. Connect a 1μF ceramic capacitor CHG_VDDP to ground. 1. If VBUS is plugged in, CHG_VDDP will be powered by VBUS and regulated to 4.9V. 2. If VBUS is unplugged, the charger will operate in sleep mode and the CHG_VDDP voltage will be 0V.
		* For 2. : Since the CHG_VDDP voltage is also used to power the TS resistor, when the charger is in sleep mode, the CHG_VDDP will be woken up (be

Pin No. Pin Name		Pin Description			
		reactivated) if VBAT is greater than forward voltage (VF) of the internal high-side (HS) MOS diode by VSLEEP_EXIT with all function of the internal ADC being			
		activated. The CHG_VDDP wake-up time is 500ms.			
E4	OVP_CTRL	Input over-voltage protection (IN_OVP) control input.			
E5, E6, E7, F5, F6, F7, G5, G6, G7, G9	AGND	Analog ground. Tie AGND and ground on the PCB.			
E8	CHG_QONB	nternal BATFET enable control input. In shipping mode, CHG_QONB is pulled			
E9	CHG_ENB	Charger enable input, active-low.			
E10	BL_LED2	Backlight current regulator output 2.			
F3	CHG_VBATOVPB	Battery over-voltage protection (BAT OVP) indication, open–drain and active-low output: Low if BAT OVP occurs, and High, otherwise.			
F4	NC	No internal connection.			
F8	CHG_DSEL	Open-drain output. When the device starts to detect input power source, CHG_DSEL drives Low to indicate that detection is in progress and the device needs to take control of the D+ and D- signals. When detection is completed, CHG_DSEL holds Low if DCP (Dedicated Charging Port) or HVDCP adapter is detected. CHG_DSEL returns to High if SDP (Standard Downstream Port) or CDP (Charging Downstream Port) is detected.			
F10	BL_LED3	Backlight current regulator output 3.			
G1, G2, H1, H2	VBAT	Charge current output node for battery connection. The internal BATFET is connected between VSYS and VBAT. Connect a 10µF ceramic capacitor between VBAT and ground.			
G4	CHG_STAT	Charge status indication, open-drain output that indicates charge is in progress when held low and charge is finished when held High. If any fault occurs, CHG_STAT will blink at the frequency of 1Hz. Connect a 2.2k to $10k\Omega$ pull-up resistor.			
G8	FL_TXMASK	Configurable power amplifier synchronization input or configurable active-high torch mode enable. Connect an internal pull-down resistor of $300k\Omega$ between FL_TXMASK and ground.			
G10	BL_LED4	Backlight current regulator output 4.			
H4	RGB_ISINK4	RGB LED current sink output 4.			
H5	RGB_ISINK1	RGB LED current sink output 1.			
H6	DB_ENN	Enable control input for DB_NEGVOUT.			
H7	DB_ENP	Enable control input for DB_POSVOUT.			
H8	MRSTB	Manual reset input for hardware reset.			
H9	BL_PWM	Backlight PWM dimming control input.			
H10	BL_EN	Backlight enable control input.			
J1	LDO_VOUT	LDO output. Connect a $2.2 \mu F$ ceramic capacitor between LDO_VOUT and ground.			
J2	LDO_VIN	LDO power input. Connect a $2.2\mu F$ ceramic capacitor between LDO_VIN and ground.			
J3	TS	Battery temperature-sense input, connected to a resistor divider for temperature programming. If there is no need for the battery temperature-sense function, a $50k\Omega$ resistor is connected to CHG_VDDP and another $50k\Omega$ resistor to ground.			
J4	RGB_ISINK3	RGB LED current sink output 3.			
J5	RGB_ISINK2	RGB LED current sink output 2.			
J6	IRQB	Interrupt output, active-low open-drain, to request the processor to read the registers.			

Pin No. Pin Name		Pin Description		
J8	SCL	I2C interface serial clock input. Open-drain. An external pull-up resistor is required.		
19	SDA	I2C interface serial data input/output. Open-drain. An external pull-up resistor is required.		
J10	VDDA	Regulated power input for an internal analog base. Connect a $1\mu\text{F}$ ceramic capacitor between VDDA and ground.		
K1	DB_NEGVOUT	Display bias negative voltage output from the inverting charge pump. Connect a 10µF ceramic capacitor between DB_NEGVOUT and ground.		
К2	DB_NEGCF2	Inverting charge pump connection point for negative terminal of the flying capacitor. Connect a 10μ F ceramic capacitor between DB_NEGCF2 and DB_NEGCF1.		
К3	DB_NEGPGND	Display bias negative-voltage power ground. Tie DB_NEGPGND and ground on the PCB.		
К4	DB_NEGCF1	Inverting charge pump connection point for positive terminal of the flying capacitor. Connect a 10μ F ceramic capacitor between DB_NEGCF2 and DB_NEGCF1.		
К5	DB_POSVOUT	Display bias positive voltage output from the LDO. Connect a 10µF ceramic capacitor between DB_POSVOUT and ground.		
К6	DB_BSTVOUT	Display bias boost converter output. Connect a 10µF ceramic capacitor between DB_BSTVOUT and ground.		
К7	DB_POSVLX	Display bias boost converter switch node. Connect a 2.2µH inductor between DB_POSVLX and VSYS.		
К8	DB_POSPGND	Display bias positive-voltage power ground. Tie DB_POSPGND and ground on the PCB.		
К9	VDDM	Regulated voltage output. Connect a 1μ F ceramic capacitor between VDDM and PGND. It also provides power to all VDDA-powered circuits.		
K10	DB_VDDA	Display bias analog power supply. Connect a 1µF ceramic capacitor between DB_VDDA and ground.		

2 Electrical Characteristics

2.1 Absolute Maximum Ratings

(1)

٠	BL_VLX, BL_VOUT and (BL_LED1 to BL_LED4)	0.3V to 30V
٠	VBUS, PD_VBUS	0.3V to 28V
٠	OVP_CTRL, PD_CC1, PD_CC2	0.3V to 24V
٠	CHG_VIN, CHG_VMID, CHG_BOOT, FL_VMID	0.3V to 22V
٠	D+, D-, CHG_LX	0.3V to 16V
	LX (Peak < 100ns duration)	2V
٠	DB_POSVOUT, DB_BSTVOUT, DB_POSVLX	0.3V to 7V
٠	Negative Charge Pump Switching Voltage (DB_NEGCF2)	- 0.3V to -6.5V
٠	Negative Charge Pump Voltage (DB_NEGVOUT)	- 0.3V to -6.5V
٠	Other Pins	0.3V to 6V
•	Power Dissipation, PD @ $T_A = 25^{\circ}C$	
	WL-CSP-93B 4.22x4.32 (BSC)	- 4.38W
•	Package Thermal Resistance ⁽²⁾	
	WL-CSP-93B 4.22x4.32 (BSC), θ _{JA}	- 22.8°C/W
•	Lead Temperature (Soldering, 10 sec.)	- 260°C
•	Junction Temperature	- 150°C
•	Storage Temperature Range	65°C to 150°C
٠	ESD Susceptibility ⁽³⁾	
	HBM (Human Body Model)	- 2kV

- (1) Note 1 Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- (2) Note 2 θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}$ C with the component mounted on a high effective-thermalconductivity four-layer test board on a JEDEC 51-7 thermal measurement standard.

(3) Note 3 Devices are ESD sensitive. Handling precaution recommended.

2.2 Recommended Operating Range

(Note)

٠	VBUS Supply Input Voltage	4V to 14V
٠	VBAT Supply Input Voltage	2.7V to 5.5V
٠	Junction Temperature Range	-40°C to 125°C
٠	Ambient Temperature Range	-40°C to 85°C

Note. The device is not guaranteed to function outside its operating conditions.

2.3 **Electrical Characteristics**

 $V_{CHG_{VIN}} = 5V$, $V_{BAT} = 4.2V$, $L2 = 1\mu$ H, $C2 = 2.2\mu$ F, $C19 = 10\mu$ F, $T_A = 25^{\circ}$ C, unless otherwise specified

Parameter	Symbol	Test Conditions	Min	Turp	Max	Unit
	Symbol	lest conditions	IVIIII	Тур	IVIdX	Unit
Quiescent Current Shutdown Current	Ishdn	On VBAT pin, with all channels shut down, $V_{BAT} = 4V$		60	85	μΑ
Shipping-Mode Current	IBAT_SHIP	VBAT only, in shipping mode		31	46	μA
V _{BUS} Supply Current	Ivbus	V_{CHG_VLX} is non-switching, $V_{BUS} = 5V$, $V_{BAT} = V_{CV_CHG}$, ICHG = 0, Flash LED, LDO, Backlight and RGB devices disabled, PD Cable attached (Full functions are not in the communication situation)		8.55	11.12	mA
V _{BUS} Supply Current with PD Communication	Ivbus_ pdtx_on	V_{CHG_VLX} is non-switching, $V_{BUS} = 5V$, $V_{BAT} = V_{CV_CHG}$, $I_{CHG} = 0$, Flash LED, LDO, Backlight and RGB drivers disabled, PD Cable attached (Full functions are in the communication situation)		12.55	16.31	mA
V _{BUS} Supply Current with Charger in H-Z Mode	Ivbus_hz	V_{CHG_VLX} is in high-impedance mode, $V_{BUS} = 5V$, $V_{BAT} = V_{CV_CHG}$ Flash LED, LDO, Backlight and RGB devices disabled, PD in ultra-low power mode		810	1053	μΑ
BAT Supply Current	Ibat_ldo_on	$V_{BUS} = 0V$, $V_{BAT} = 3.8V$, charger, Flash LED, Backlight and RGB devices disabled, LDO enabled with load = 0, PD in ultra-low power mode		200	300	μΑ
BAT Supply Current	Ibat_db_on	V _{BUS} = 0V, V _{BAT} = 3.8V, charger, Flash LED, Backlight and RGB devices disabled, display bias driver enabled with load = 0, PD in ultra-low power mode		1750	2100	μΑ
Over-Temperature Protection Threshold	T _{otp}	Thermal shutdown threshold temperature		160		°C
Over-Temperature Protection Hysteresis	Totp_hys	Thermal shutdown hysteresis temperature		20		°C
Control I/O Pin & VDDA	<u> </u>					
Logic-Low Threshold Voltage for All Open- Drain Outputs	Vol	I _{DS} = 10mA			0.4	V
Logic-High Threshold Voltage for All Inputs	VIH	Logic high threshold	1.2			V
Logic-Low Threshold Voltage for All Inputs	VIL	Logic low threshold			0.4	V
VDDA Under-Voltage Protection Threshold	Vvdda_uvlo	V _{DDA} falling	2.3	2.4	2.5	V
VDDA Under-Voltage Protection Hysteresis	Vvdda_uvlo_ hys	V _{DDA} rising		0.1		V
VDDA Over-Voltage Protection Threshold	VVDDA_OVP	V _{DDA} rising	5.7	5.95	6.2	V

Table 2-1. Electrical specifications

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
VDDA Over-Voltage		Very falling		0.2		v
Protection Hysteresis	Vvdda_ovp_hys	V _{DDA} falling		0.2		v
Pull-Down Resistance	R _{L_MRSTB}			300		kΩ
on MRSTB						
OVP Controller					r – – – – – – – – – – – – – – – – – – –	
VBUS POR Threshold	V _{POR_OVP}	V _{BUS} rising	2.5	2.7	2.9	v
for CHG_VIN Only	-					
VBUS POR Hysteresis Only for CHG_VIN	VPOR_OVP_HYS	V _{BUS} falling		100		mV
POR Deglitch Time Only for CHG_VIN	td_por_ovp	V _{BUS} = 5V to 12V	22.4	32	41.6	ms
Over-Voltage Protection Threshold	V _{OVP}	V _{BUS} rising	15.5	16.5	17.5	V
Over-Voltage Protection Hysteresis	Vovp_hys	V _{BUS} falling		200		mV
OVP Propagation Delay for MOS Turned Off	tpd_ovp	V_{BUS} from 12V to 20V, (6V/µs), Q_g of MOS at V_{GS} = 4.5V < 20nC		0.18	0.25	μs
OVP Recovery Delay	trd ovp	V _{BUS} from 20V to 12V	5.6	8	10.4	ms
Charger			5.0	0	10.4	113
Sleep-Mode Entry	V _{SLEEP}					
Threshold, VBUS-VBAT	V SLEEP_ ENTER_CHG	V _{BUS} falling, 2.5V < V _{BAT} < V _{OREG_CHG}	0	0.04	0.1	V
Sleep-Mode Exit Threshold, VBUS-VBAT	Vsleep_exit_ chg	V _{BUS} rising, 2.5V < V _{BAT} < V _{OREG_CHG}	0.04	0.1	0.2	V
Sleep-Mode Exit	td sleep			100		
Deglitch Time	EXIT_CHG	Exit sleep-mode		120		ms
CHG_VIN Bad Adapter Threshold	VBAD_ADP_CHG			3.8		V
CHG_VIN Bad Adapter	VBAD_ADP_			150		mV
Hysteresis	HYS_CHG					
CHG_VIN Bad Adapter Sink Current	Ibad_adp_ sink_chg			50		mA
CHG_VIN Bad Adapter	tbad_adp_			20		
Detection Time	DET_CHG			30		ms
Input Current Limit Factor	Kilim_chg	Input current regulation 508mA by ILIM pin with resistance = 698Ω	320	355	390	AΩ
CHG_VIN Minimum Input Voltage Regulation (MIVR) Threshold	Vmivr_chg	I ² C programmable range in 0.1V steps	3.9		13.4	V
CHG_VIN Minimum Input Voltage Regulation Accuracy	Vmivr_acc_chg	V _{MIVR} = 4.4V or 9V	-2		2	%
AICR 100mA Mode	IAICR_100mA_ CHG	$I_{AICR} = 100 \text{mA}, V_{CHG_VIN} = 5V,$ VBAT = 3.8V	86	93	100	mA
AICR 500mA Mode	I _{AICR_500mA} CHG	$I_{AICR} = 500$ mA, $V_{CHG_VIN} = 5V$, VBAT = 3.8V	440	470	500	mA
AICR 1000mA Mode	I _{AICR_1000mA_} CHG	I _{AICR} = 1000mA, V _{CHG_VIN} = 5V, VBAT = 3.8V	880	940	1000	mA
AICR 1500mA Mode	IAICR_1500mA_ CHG	$I_{AICR} = 1500 \text{mA}, V_{CHG_VIN} = 5V,$ $V_{BAT} = 3.8V$	1300	1400	1500	mA
CHG VIN UVLO	VUVLO_CHG	V _{CHG_VIN} rising	3.05	3.3	3.55	V

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
CHG_VIN UVLO	-	· · · · · · · · · · · · · · · · · · ·				
Hysteresis	Vuvlo_hys_chg	V _{CHG_VIN} falling		150		mV
CHG_VIN Over-Voltage	VCHG_VIN_OVP_		40.5			
Protection Threshold	– – – СНG	V _{CHG_VIN} rising	13.5	14.5	15.5	V
CHG VIN Over-Voltage	VCHG_VIN_OVP_HYS_C					
Protection Hysteresis	HG	$V_{CHG_{VIN}}$ falling		250		mV
VBAT Over-Voltage		V _{BAT} rising, as percentage of V _{OREG CHG} ,	100	100		
Protection Threshold	VBAT_OVP_CHG	as VBAT_OVP/VOREG_CHG	106	108	110	%
VBAT Over-Voltage	V _{BAT_OVP_}					
Protection Hysteresis	HYS_CHG	VBAT falling, as (VBAT_OVP_HYS)/VOREG_CHG		4		%
Thermal Regulation		Charge current starts decreasing				
Threshold	tthreg_chg	(default)		120		°C
VSYS Over-Voltage						
Protection Threshold	V _{SYS_OVP_CHG}	V _{SYS} rising	4.9	5.25	5.5	V
VSYS Under-Voltage						
Protection	Vsys_uvp_chg	V _{sys} falling	2.2	2.4	2.6	V
End of Charge	L					
Battery Regulation		2				
Voltage Range	Voreg_chg	I ² C programmable in 10mV steps	3.9		4.71	V
Battery Regulation		V _{OREG CHG} = 4.2V, 4.35V, 4.36V, 4.37V or				
Voltage Accuracy	Voreg_acc_chg	$V_{OREG_CHG} = 4.38V (T_C = 0^{\circ}C to 70^{\circ}C)^{(3)}$	-0.5		0.5	%
Re-charge Mode		I^2C programmable, V _{BAT} falling, the				
Threshold	Vrech_chg	difference below Voreg CHG	50	100	150	mV
Re-charge Deglitch						
Time	td_rech_chg	V _{BAT} falling		120		ms
End-of-charge Current	IEOC CHG	I ² C programmable in 50mA steps	100		850	mA
Default End-of-charge						
Current	IEOC_DEF_CHG	Default.		250		mA
End-of-charge Current						
Accuracy	IEOC_ACC	I _{ЕОС_СНБ} = 100 to 850mA	-20		20	%
End-of-charge Deglitch		I ² C default, I _{CHG} < I _{EOC_CHG} , V _{BAT} >				
Time	td_eoc_chg	Vrech_chg		2		ms
		I ² C programmable in 0.1A steps,				
Charge Current	I _{CHG}	0x17 bit[7:2]	0.5		5	A
ICHG Current		$V_{BAT} = 3.8V, I_{CHG} = 500 \text{mA}, (T_c = -30^{\circ}\text{C to})$				
Accuracy 1	Ichg_acc1_chg	65°C)	-20		20	%
ICHG Current		V _{BAT} = 3.8V, 500mA < I _{CHG} < 1000mA, (T _C				
Accuracy 2	Ichg_acc2_chg	$= -30^{\circ}$ C to 65°C)	-10		10	%
ICHG Current		V _{BAT} = 3.8V, I _{CHG} > 1000mA, (T _c = -30°C				
Accuracy 3	Існд_ассз_снд	to 65°C)	-7		7	%
Pre-Charge Mode						
Threshold	Vprechg_chg	I ² C programmable in 0.1V steps, rising	2.0		3.5	V
Pre-Charge Mode	Vprechg_	Pre-charge hysteresis, falling		0.2		V
Hysteresis	HYS_CHG					
Pre-Charge Threshold	V _{PRECHG}	V _{BAT} < V _{PREC_CHG}	-5		5	%
Accuracy	ACC_CHG	_				
Pre-Charge Current	Iprechg_chg	I ² C programmable (default)		150		mA
Pre-Charge Current	Iprechg_		-20		20	%
Accuracy	ACC_CHG					
VSYS Regulation	V _{SYS_MIN_CHG}	I ² C programmable in 0.1V steps	3.3		4	V
Voltage	- 515_10110_010		0.0			•

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
VSYS Regulation	Vsys_min_					
Voltage Accuracy	ACC_CHG		-3		3	%
UUG On-Resistance	Ron_uug_chg	From VBUS to CHG_VMID		14	30	mΩ
UG On-Resistance	Ron_ug_chg	From CHG_VMID to CHG_VLX		28	40	mΩ
LG On-Resistance	Ron_lg_chg	From CHG_VLX to PGND		28	40	mΩ
PPMOS On-Resistance	RON_PPMOS_CHG	From VSYS to VBAT		13	30	mΩ
Switching Frequency	fosc1_снg	I ² C programmable to 1.5 MHz		1.5		MHz
Switching Frequency Accuracy	fosc_acc_chg		-10		10	%
Maximum Duty Cycle	Dmax_chg			97		%
Minimum Duty Cycle	Dmin_chg		0			%
VDDP Regulation	VVDDP_CHG	V _{BUS} = 5V	4.5	4.9	5.3	V
-		REG0x1D[2] = 1'b0	4	6	8	
Buck OCP Current	Івиск_оср_снд	REG0x1D[2] = 1 'b1	5.6	8	10.4	A
Sink Current for Battery Detection	Ibat_sink_chg			300		μΑ
Internal QONB Pull-Up Resistance	R qonb_chg		90	125	160	kΩ
QONB Exit Shipping Mode Duration	tshipmode_chg	CHG_QONB Low for BATFET on-time to exit shipping mode	0.81	0.9	0.99	s
QONB System Reset	tqonb_rst_chg	CHG_QONB low time to enable full system reset	12	15	18	s
BATFET Reset Time	tbatfet_rst_chg	BATFET off-time during full system reset	0.54	0.6	0.66	s
Shipping Mode Entry Deglitch Time	td_ship_enter	Enter shipping mode delay		9		s
AICL	VAICL_CHG	V _{BUS} rising, I ² C programmable		4.6		V
AICL Hysteresis	VAICL_HYS_CHG			50		mV
OTG Output Regulation	VBSTCV_CHG	I ² C programmable default		5.05		V
OTG Output Accuracy	VBSTCV_ACC_CHG	IvBUS = no load, VOBST = 5.05V	-3		3	%
OTG Over-Load Protection Threshold	I _{BST_0.5A_CHG}	REG0x1A[2:0] = 3'b000	0.5	0.55	0.6	А
OTG CHG_VMID Over- Voltage Protection Threshold	VMIDOVP_ OTG_CHG	V _{CHG_VMID} rising	4.2	6		v
OTG CHG_VMID Over- Voltage Protection Hysteresis	Vmidovp_otg_ hys_chg			200		mV
OTG VBAT Under- Voltage Protection Threshold	Vbat_uvp_ otg_chg	I ² C default, VBAT falling		2.8	3.08	v
OTG VBAT Under- Voltage Protection Hysteresis	Vbat_uvp_otg_hys_c hg	Rising		400		mV
OTG Over-Current Protection Threshold	Іотд_оср_сна	Default = 6.05A	5.2	6.05	6.9	А
Battery Temperature HOT Threshold	Vvts_hot_chg	V _{TS} falling, the ratio of CHG_VDDP	33.5	34.5	35.5	%VTS
Battery Temperature WARM Threshold	Vvts_warm_chg	V_{TS} falling, the ratio of CHG_VDDP	44	45	46	%VTS

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Battery Temperature COOL Threshold	Vvts_cool_chg	V_{TS} rising, the ratio of CHG_VDDP	67.5	68.5	69.5	%VTS
Battery Temperature COLD Threshold	Vvts_cold_chg	V _{TS} rising, the ratio of CHG_VDDP	72.5	73.5	74.5	%VTS
Battery Temperature Hysteresis	Vvts_hys_chg			2		%VTS
VDP_SRC Voltage	Vdp_src_chg	With IDAT_SRC = 0 to 250µA	0.5		0.7	V
VDAT_REF Voltage	Vdat_ref_chg		0.25		0.4	V
VLGC Voltage	Vlgc_chg		0.8		2	V
IDM SINK Current	IDM_SINK	May be a resistance if desired	50	100	150	μA
Data Contact Timeout	t _{dcdt}	Setting by register 0x22[5:4]		600		ms
Dedicated Charging Port resistance across D+/-	Rd+d-dcp	REG0x24[1] = 1'b1	50	90	130	Ω
Pull-Down Resistance on CHG_OTG	R _{L_CHG_OTG}			100		kΩ
Pull-Down Resistance on CHG_ENB	R снg_enb			100		kΩ
ADC					-	
ADC Conversion Time	tconv_adc	One channel	35		200	ms
Number of Bits for ADC Resolution	Res_adc			10		bits
VBUS_DIV5 Measurement Range	Vvbus_div5_adc_ran		1		22	v
VBUS_DIV5 Resolution	Vvbus_div5adc_res			25		mV
VBUS_DIV5 Accuracy	Vvbus_div5adc_acc		-3		3	LSB
VBUS_DIV2 Measurement Range	Vvbus_div2_adc_ran		1		9.7	V
VBUS_DIV2 Resolution	Vvbus_div2adc_res			10		mV
VBUS_DIV2 Accuracy	Vvbus_div2adc_acc		-3		3	LSB
VBAT Measurement Range	VBAT_ADC_ RANGE		0		4.9	V
VBAT Resolution	Vbat adc res			5		mV
VBAT Accuracy	VBAT_ADC_ACC		-2		2	LSB
VSYS Measurement Range	Vsys_adc_range		0		4.9	V
VSYS Resolution	V _{SYS_ADC_RES}			5		mV
VSYS Accuracy	Vsys_adc_acc		-2		2	LSB
CHG VDDP	VCHG_VDDP_ADC_RAN		_			
Measurement Range	 GE		0		4.9	V
CHG_VDDP Resolution	Vchg_vddp_adc_res			5		mV
CHG_VDDP Accuracy	V _{CHG_VDDP_ADC_ACC}		-2		2	LSB
TS_BAT Measurement Range	RATETS_BAT_		0		100	%
TS_BAT Resolution	RATETS_BAT_RES			0.25		%
TS_BAT Accuracy	RATETS_BAT_ACC		-2		2	LSB
IBUS Measurement Range	libus_adc_ Range		0		5	A
IBUS Resolution	IBUS_ADC_RES			50		mA
		I _{BUS} > 2A, IAICR [5:0] setting ≥ 400mA		50	ł	

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
		$I_{BUS} < 2A$, IAICR [5:0] setting \geq 400mA	-2		2	
		I _{BUS} < 2A, IAICR [5:0] setting < 400mA	-2		2	
IBAT Measurement	IIBAT_ADC_		0		_	•
Range	RANGE		0		5	A
IBAT Resolution	IIBAT_ADC_RES			50		mA
IBAT Accuracy	IIBAT_ADC_ACC		-2		2	LSB
TEMP_JC	TTEMP_JC_ADC_		-40		120	°C
Measurement Range	RANGE		-40		120	Ľ
TEMP_JC Resolution	Ttemp_jc_adc_ res			2		°C
TEMP_JC Accuracy	Ttemp_jc_adc_ acc	Temperature < 85°C	-2		2	LSB
Pump Express						
PE+1 On Time (A)	t _{on_a_pe}	V _{BAT} = 3.8V. Use PE+ adapter	430	500	570	ms
PE+1 On Time (B)	ton_b_pe	V _{BAT} = 3.8V. Use PE+ adapter	240	300	360	ms
PE+1 On Time (C)	ton_c_pe	V _{BAT} = 3.8V. Use PE+ adapter	70	100	130	ms
PE+1 Off Time (D)	toff_d_pe	V _{BAT} = 3.8V. Use PE+ adapter	70	100	130	ms
PE+1 Off Time (I)	toff_1_pe	V _{BAT} = 3.8V. Use PE+ adapter	80		225	ms
PE+2 Off Time (D)	toff_d_pe	V _{BAT} = 3.8V. Use PE+ adapter	87	105	128	ms
PE+2 On Time (E)	ton_e_pe	V _{BAT} = 3.8V. Use PE+ adapter	147	190	248	ms
PE+2 On Time (F)	t _{on_f_pe}	V _{BAT} = 3.8V. Use PE+ adapter	87	102.5	118	ms
PE+2 On Time (G)	ton_g_pe	V _{BAT} = 3.8V. Use PE+ adapter	22	50	68	ms
PE+2 Off Time (H)	t _{off_h_pe}	V _{BAT} = 3.8V. Use PE+ adapter	22	50	68	ms
PE+2 Off Time (I)	t _{off_l_pe}	V _{BAT} = 3.8V. Use PE+ adapter	135	155	175	ms
Flash LED Current Sour	ce					
LED Current Accuracy	ILED1_ACC_FL	Flash LED current is set 25mA to 400mA	-8		8	%
LED Current Accuracy	ILED2_ACC_FL	Flash LED current set 0.4A to 1A	-6		6	%
FL_LEDCSx Leakage		VLEDVIN = 5V, LEDCSX = 0,		0.1	4	
Current	I _{LEAK_FL}	LEDCSX disabled		0.1	4	μA
FL_LEDCSx Start Up	Istart fl	LEDCSX = 0, LEDCSX enabled		320	1000	μA
Current	ISIANI_FL			520	1000	μΛ
LEDCSX Short	V _{SC_FL}			1	1.3	v
Threshold						
LEDCSX Short Event Timer	td_sc_fl		1.8	2.5	3.3	ms
Flash Time-Out	+			1248		ma
	ttimeout_fl	FLEDx_STRB_TO = 0100101		1248		ms %
Flash Timer Accuracy Current Source	tmr_acc_fl	Timer set by register	-10		10	%
Regulation Voltage	Vreg1_fl	I _{LED} = 200mA, 0x7C[1:0] = 00		200	300	mV
Current Source Regulation Voltage	Vreg2_fl	I _{LED} = 1500mA, 0x7C[1:0] = 01			500	mV
Strobe/TXMask Deglitch Time	td_strb_fl			10		μs
Flash Ready Time	tflsh_rdy_fl	EN_LEDCS = 1 to current reach 800mA target value		4.5	5	ms
Strobe FL-CHG_VIN OVP	VIN_OVP_FL		5.45	5.6	5.75	V
Strobe FL-CHG_VIN	VIN_OVP_		0.25	0.2	0.25	¥.
OVP Hysteresis	Hys_FL		0.25	0.3	0.35	V

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Timer Accuracy	td_acc_fl	V _{DDA} = 2.7V to 5.5V (for deglitch time, soft-start)		10	15	%
High Side Switch On- Resistance	R _{on_h_fl}			60		mΩ
Low Side Switch On- Resistance	Ron_l_fl			36		mΩ
Pull-Down Resistance on FL_STROBE	Rl_fl_strobe			350		kΩ
Pull-Down Resistance on BL_EN	$R_{L_FL_TORCH}$			350		kΩ
Pull-Down Resistance on FL_TXMASK	RL_FL_TXMASK			300		kΩ
Backlight						
Maximum Backlight LED Current	ILED_MAX_BL	Maximum LED current (per string)		30		mA
Backlight LED Current		$2.7V \le V_{SYS} \le 5V$, 6mA < I_{LED} < 30mA, Linear or Exponential Mode	-3		3	%
Accuracy	ILED_ACC_BL	$2.7V \le V_{SYS} \le 5V$, $0.1mA < I_{LED} < 6mA$, Linear or Exponential Mode	-10		10	%
Backlight LED Current Matching	ILED_MATCH_BL	$2.7V \le V_{SYS} \le 5V$, $100\mu A < I_{LED} < 30mA$, Linear or Exponential Mode	-3	0.2	3	%
Minimum Backlight LED Current	Iled_min_ linear_bl	PWM or I ² C current control linear mode (per string) ⁽³⁾		14.6		μA
Minimum Backlight LED Current		PWM or I ² C current control exponential mode ⁽³⁾		60		μA
LED Current Step size	Iled_step_ exp_bl	Exponential mode (Code to Code)		0.3		%
LED Current Step size	Iled_step_ Linear_bl	Linear mode (Code to Code)		14.6		μA
Backlight Output Over- Voltage Protection Threshold	V _{OVP_BL}	$2.7V \le VCHG_VIN \le 5V$, rising. BLED_OVP @ REG0xA1[6:5] = 2'b01	19.8	21	22.2	V
Regulated Current Sink Headroom Voltage (Boost Feedback Voltage)	V _{HR_BL}	I _{LED} = 3 mA		500		mV
N-MOSFET On- Resistance	R _{on_n_bl}	I _{sw} = 500mA		0.2		Ω
Switching Frequency	f _{sw_bl}	$2.7V \le V_{IN} \le 5V$ $2.7V \le V_{IN} \le 5V$	450 900	500 1000	550 1100	kHz kHz
N-MOSFET Current Limit Tolerance	Ilim_nmos_bl	$2.7V \le V_{IN} \le 5V @ REG0xA1[2:1]:$ BL_OC = 2'b01	960	1200	1440	mA
Maximum Boost Duty Cycle	D _{MAX_BST_BL}	_	92	96		%
PWM Input Frequency Range	fpwm_bl	$2.7V \le V_{IN} \le 5V$	50		50000	Hz
		Sample rate = 24MHz	183.3			
Minimum Pulse ON	t _{on_min_bl}	Sample rate = 4MHz	1100			ns
Time	_	Sample rate = 1MHz	5500	-		
Minimum Pulse OFF	+	Sample rate = 24MHz	183.3			200
Time	toff_min_bl	Sample rate = 4MHz	1100			ns

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
		Sample rate = 1MHz	5500			
Turn on Delay from PWM = 0 to PWM = 50% Duty Cycle	t_start_up_bl	24MHz sample rate, FPWM = 10kHz		6	9	ms
		Sample rate = 24MHz	0.54	0.60	0.66	
PWM Shutdown Period	tpwm_stby_bl	Sample rate = 4MHz	0.27	3	3.3	ms
		Sample rate = 1MHz	22.5	25	27.5	
Pull-Down Resistance on PWM	Rl_blpwm	Pull-down resistance on PWM		335		kΩ
Pull-Down Resistance on BL_EN	Rl_blen			388		kΩ
PWM Input Resolution	R _{ESPWM_BL}	50Hz < FPWM < 11kHz			11	bits
Display Bias						
Positive Voltage Accuracy	Vposv_acc_db	REG0XB3[5:0] = 6'b011100, I _{OUT} = 0mA	-1		1	%
Negative Voltage Accuracy	V _{NEGV_ACC_DB}	REG0XB4[5:0] = 6'b011100, I _{OUT} = 0mA	-1.5		1.5	%
POS Ripple	VRIPPLE_POS	REG0xB2[5:0] = 0'b100010, REG0XB3[5:0] = 0'b011110, I _{OUT} = 0mA		20		mV
NEG Ripple	VRIPPLE_NEG	REG0xB2[5:0] = 0'b100010, REG0xB4[5:0] = 0'b011110, I _{OUT} = 0mA		75		mV
Display Bias LDO Dropout Voltage	Vdrop_db	V _{DB_BST} = V _{DB_POS} = 5.2V, I _{OUT} = 80mA		35	70	mV
BST Switching Frequency	f _{sw_db}		0.9	1.0	1.1	MHz
Maximum Duty Cycle	Dmax db		90	91		%
BST N-MOSFET On- Resistance	Ron_n_db		0.05	0.3	0.6	Ω
BST P-MOSFET On- Resistance	Ron_p_db	REG0XB2[5:0] = 6'b100010	0.05	0.5	1	Ω
Charge Pump Equivalent Resistance	R _{EQ_CP_DB}	V _{DB_BSTVOUT} = 5.2V, I _{NEG} = 50mA		2.4		Ω
POS Discharge Resistor	Rdischp_db	REG0xB1[5] = 1'b1		70		Ω
NEG Discharge Resistor	Rdischn_db	REG0xB1[2] = 1'b1		20		Ω
BST Current Limit	IBSTOCP_DB	REG0xB2[5:0] = 6'b100010	0.88	1.1	1.32	А
POS Short-Circuit Protection Voltage	V _{SCPP_DB}			0.8 x DB_VPOS		V
NEG Short-Circuit Protection Voltage	Vscpn_db			 0.25 - 0.8 x DB_VNEG		V
Pull-Down Resistance on DB ENN	Rl_db_enn			386		kΩ
Pull-Down Resistance on DB_ENP	R _{L_DB_ENP}			386		kΩ
USB_PD	I		l			
Bit Rate	f _{BitRate_PD}		270	300	330	Kbps
Maximum difference					550	
between the bit rate during the part of the packet following the Preamble and the reference bit-rate.	pBitRate_PD				0.25	%

Power Management IC Product Brief

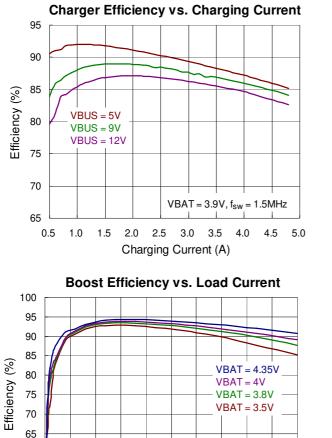
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Time from the end of						
last bit of a frame until			25			
the start of the first bit	t _{InterFrameGap_PD}		25			μs
of the next Preamble.						
Time before the start of						
the first bit of the						
Preamble when the	t _{StartDrive} PD		-1		1	μs
transmitter shall start						•
driving the line						
Time to cease driving						
the line after the end	$t_{EndDriveBMC}$				22	
of the last bit of the	PD				23	μs
frame.						
Fall Time	t _{Fall_PD}		300			ns
Time to cease driving						
the line after the final	tHoldLowBMC PD		1			μs
high-to-low transition						
Rise Time	t _{Rise PD}		300			ns
Voltage Swing	Vswing_PD		1.05	1.125	1.2	V
Transmitter Output	• Swillg_FD		1.05	1.125	1.2	•
Impedance	Z _{Driver_PD}		33		75	Ω
Time window for						
detecting non-idle	$t_{\text{TransitionWindow_PD}}$		12		20	μs
Receiver Input						
Impedance	ZBmcRx_PD		1			MΩ
Operating Supply						
Current	I _{OP_PD}	Cable attached (Full function on)		2.8		mA
Idle Mode Current (Act						
as a source)	IDLE_SRC1_PD	Cable attached with Ra, Rd		300		μΑ
Idle Mode Current (Act						
as a source)	IDLE_SRC2_PD	Cable attached with either Ra or Rd		200		μΑ
Idle Mode Current (Act						
as a sink)	IDLE_SNK_PD	Cable attached		125		μΑ
		Cable unattached, VPD_VCONN5V = 5V		20		
Low-Power Mode	ILOW-POWER_PD	Cable unattached, V_{PD} vconnsv = $0V$		10		μΑ
Shipping Made Current						
Shipping-Mode Current	Iship_pd			1		μA
VCONN Switch On-	R _{ON_VCONN_PD}			0.7	1	Ω
Resistance	1		200		600	
OCP Range	I _{OCP_PD}		200		600	mA
Time for VCONN Switch	td_soft_pd			1.2		ms
to Turn-On State						
DFP 80µA CC Current	ICC_DFP80µ_PD		64	80	96	μA
DFP 180µA CC Current	ICC_DFP180µ_PD		166	180	194	μA
DFP 330µA CC Current	Ісс_dfp330µ_pd		304	330	356	μΑ
UFP Pull-Down						
Resistance through CC	Rd_pd		4.59	5.1	5.61	kΩ
Pin						
UFP Pull-Down						
Threshold Voltage in	$V_{\text{TH}_\text{DBL}_\text{PD}}$	Under I_{CHG} = $I_{CC_DFP80\mu_PD}$ and $I_{CC_DFP180\mu_PD}$	0.2		1.6	V
Dead Battery						

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
UFP Pull-Down	-,			- 71		
Threshold Voltage in	V _{TH_DBH_PD}	Under I _{CHG} = I _{CC_DFP330µ_PD}	0.8		2.45	v
Dead Battery						
Valid VBUS Detection			2 5		4.0	
Threshold	VVALID_VBUS_PD		3.5		4.0	V
VBUS Measurement	M		4		20	v
Range	Vvbusmr_pd		4		20	v
VBUS Measurement Step	Vvbus_msl_pd	If V_{BUS} measurement range is from 4V to 10V		0.5		V
VBUS Measurement		If V _{BUS} measurement range is from 10V		4		
Step	Vvbus_msh_pd	to 20V		1		V
RGB LED Driver						
Current Accuracy	ILED_ACC_RGB	I _{LED} = 4mA to 24mA	-4		4	%
Current Matching	ILED MATCH RGB	I _{LED} = 4mA to 24mA	-3		3	%
Dropout Voltage	Vdrop_rgb	ILED = 20mA		200	300	mV
LED Open-Circuit		Any ISINK voltage lower than open LED		100		
Protection Threshold	Vth_opp_rgb	protection threshold	40	100	160	mV
LED Short-Circuit		Any ISINK voltage higher than short LED	VSYS -		VSYS -	
Protection Threshold	VTH_SCP_RGB	protection threshold	0.88	VSYS - 0.5	0.12	V
LDO						
Input Voltage Range	VIN_LDO		2.7		5	V
Output Voltage Range	Vout_ldo		1.6		4	V
Output Voltage		$V_{IN_LDO} = (V_{OUT_LDO} + V_{DROP})$ to 5V, $I_{OUT} =$				
Accuracy	$\Delta V_{\text{OUT_LDO}}$	0mA to 400mA	-3		3	%/V
Load Current	Iload Ldo	$V_{IN_LDO} = (V_{OUT_LDO} + V_{DROP})$ to 5V	0		400	mA
Output Current Limit		$V_{IN_LDO} = (V_{OUT_LDO} + V_{DROP})$ to 5V, $V_{OUT} =$ 70% of V_{OUT} (Target)	600			mA
Dropout Voltage	Vdrop_ldo	$V_{\rm IN\ LDO} > 2V$, $I_{\rm OUT} = 0.3A$			180	mV
Load Regulation	ΔILOAD_LDO	$V_{IN_LDO} = (V_{OUT_LDO} + V_{DROP})$ to 5V, $I_{OUT} = 1$ mA to 400mA	-0.2	0.06	0.2	%/mA
Line Regulation	ΔV_{LINE_LDO}	V _{IN_LDO} = (V _{OUT_LDO} + V _{DROP}) to 5V, I _{OUT} = 1mA to 400mA	-1	0.5	1	%/V
Power Supply Rejection Ratio	PSRRLDO	V _{IN_LDO} = 3.6V, V _{OUT_LDO} = 2.8V, IOUT = 20mA @ 1kHz, LDO_COUT = 2.2μF ⁽³⁾		50		dB
Inrush Current	IINRUSH_LDO	$I_{OUT} = 0$ mA, LDO COUT = 2.2 μ F ⁽³⁾			500	mA
Soft-Start Time	tss_ldo	$I^{2}C$ Enable to $V_{OUT_{LDO}} = 90\%$ of $V_{OUT_{LDO}}$ (Target), LDO_COUT = 2.2µF @ Forced turn-on BASE (REG0x10[1] = 1'b1) ⁽³⁾			300	μs
Discharge Time	t _{DISCHG_LDO}	I^2C Disable to $V_{OUT_LDO} = 10\%$ of V_{OUT_LDO} (Target), LDO_COUT = $2.2\mu F^{(3)}$			500	μs
I ² C Characteristics		· · · · ·				
LOW-Level Input Voltage	V _{IL_I} ² c				0.4	V
HIGH-Level Input Voltage	Vін_i²c		1.2			v
LOW-Level Output Voltage	Vol_1 ² c	Open-drain			0.4	v
Input Current Each IO Pin	I _{IN_I} ² c	$0.1 \text{ x V}_{DD} < V_i < 0.9 \text{ x V}_{DD(MAX)}$	-10		10	μΑ
	¢ 3	$CB \leq 100 pF$			3.4	
SCL Clock Frequency	f _{scl_l} ² c_hsm	$100 \text{pF} \leq \text{CB} \leq 400 \text{pF}$			1.7	MHz

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Data Hold Time	t _{DH_1} ² c		30			ns
Data Set-Up Time	t _{DS_l} ² c		70			ns

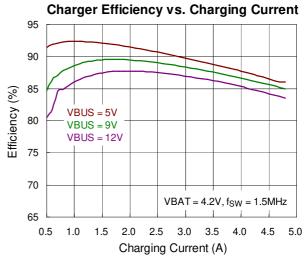
(1) Note 1 A 10k Ω NTC thermistor with β = 3435K is suggested, and a SEMITEC 103KT1608T is in use.

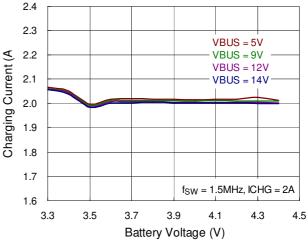
(2) Note 2 Quiescent, or ground current, is the difference between input and output currents. It is defined by IQ = IIN - IOUT under no


load condition (IOUT = 0mA). The total current drawn from the supply is the sum of the load current plus the ground pin current.

(3) Note 3 Guarantee by design.

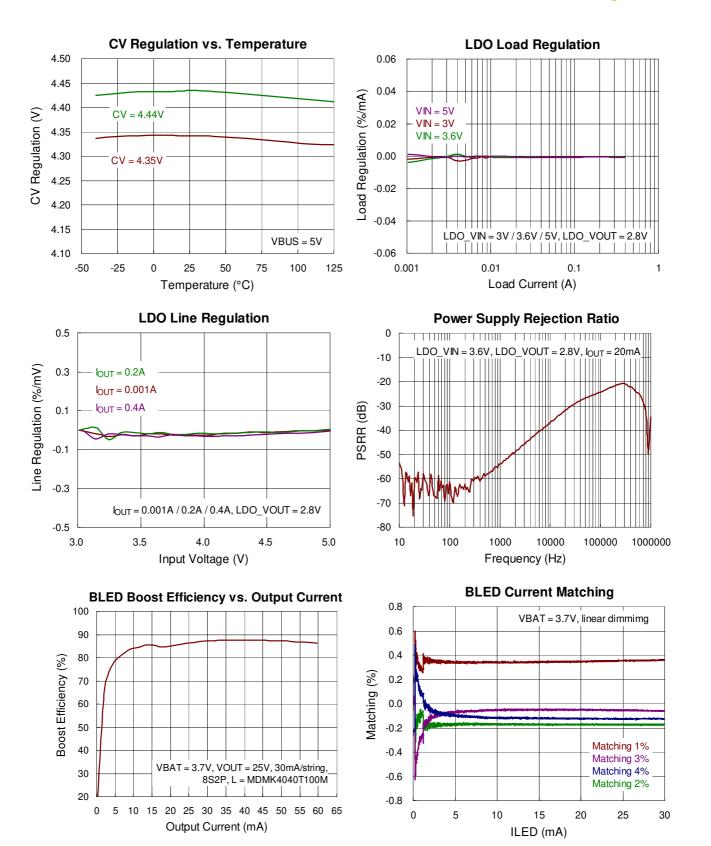
3 Typical Operating Characteristics

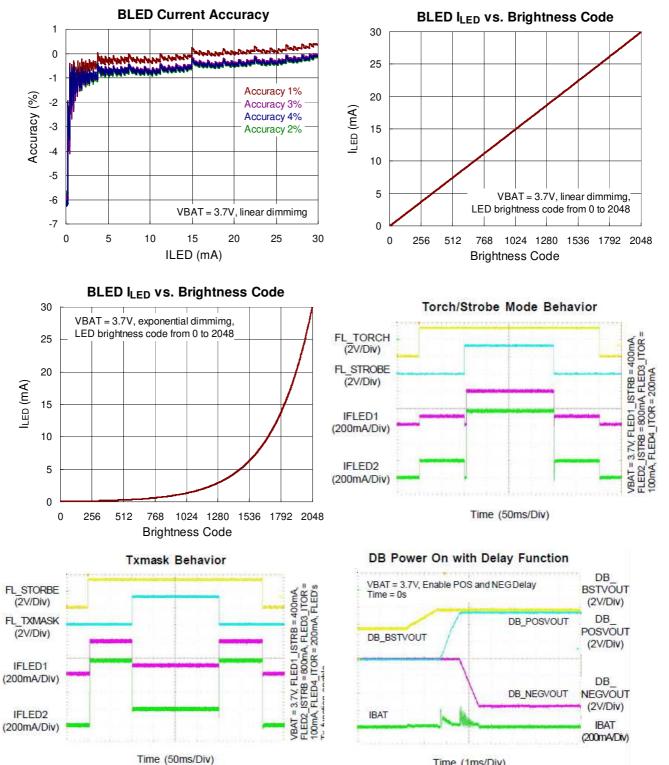

3.1 Typical Operating Characteristics


 $VBUS = 5.05V, f_{SW} = 1.5MHz$

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Load Current (A)


Charging Current vs. VBAT


60

55

50

Power Management IC Product Brief

Time (1ms/Div)

Power Management IC Product Brief

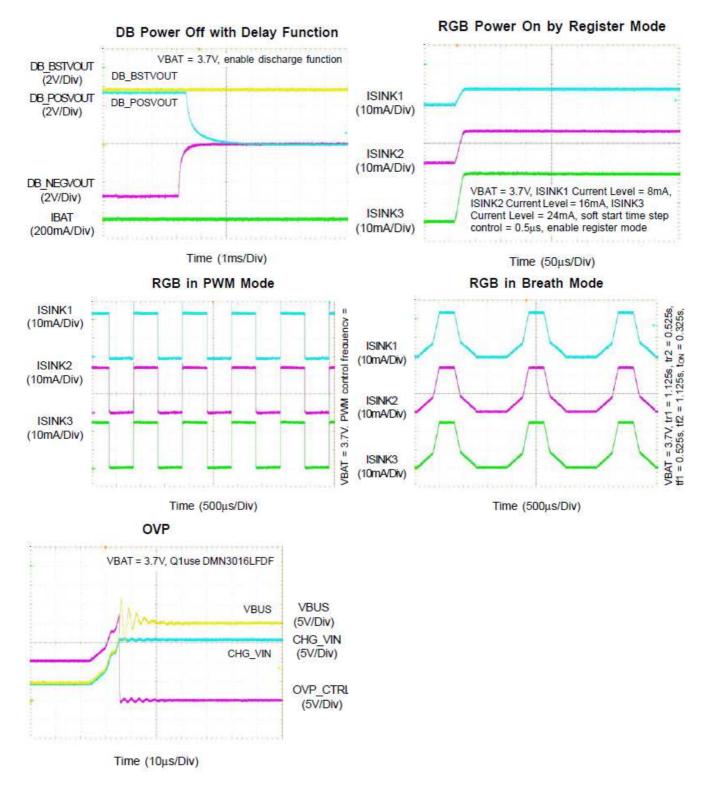


Figure 3-1. Typical operating characteristics

4 MT6370 Packaging

4.1 Outline Dimensions

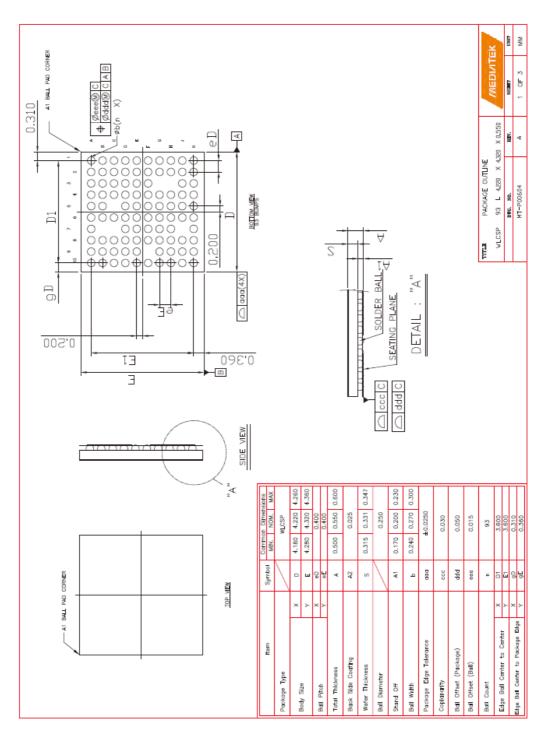


Figure 4-1. Package dimension

Exhibit 1 Terms and Conditions

Your access to and use of this document and the information contained herein (collectively this "Document") is subject to your (including the corporation or other legal entity you represent, collectively "You") acceptance of the terms and conditions set forth below ("T&C"). By using, accessing or downloading this Document, You are accepting the T&C and agree to be bound by the T&C. If You don't agree to the T&C, You may not use this Document and shall immediately destroy any copy thereof.

This Document contains information that is confidential and proprietary to MediaTek Inc. and/or its affiliates (collectively "MediaTek") or its licensors and is provided solely for Your internal use with MediaTek's chipset(s) described in this Document and shall not be used for any other purposes (including but not limited to identifying or providing evidence to support any potential patent infringement claim against MediaTek or any of MediaTek's suppliers and/or direct or indirect customers). Unauthorized use or disclosure of the information contained herein is prohibited. You agree to indemnify MediaTek for any loss or damages suffered by MediaTek for Your unauthorized use or disclosure of this Document, in whole or in part.

MediaTek and its licensors retain titles and all ownership rights in and to this Document and no license (express or implied, by estoppels or otherwise) to any intellectual propriety rights is granted hereunder. This Document is subject to change without further notification. MediaTek does not assume any responsibility arising out of or in connection with any use of, or reliance on, this Document, and specifically disclaims any and all liability, including, without limitation, consequential or incidental damages.

THIS DOCUMENT AND ANY OTHER MATERIALS OR TECHNICAL SUPPORT PROVIDED BY MEDIATEK IN CONNECTION WITH THIS DOCUMENT, IF ANY, ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE. MEDIATEK SPECIFICALLY DISCLAIMS ALL WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, COMPLETENESS OR ACCURACY AND ALL WARRANTIES ARISING OUT OF TRADE USAGE OR OUT OF A COURSE OF DEALING OR COURSE OF PERFORMANCE. MEDIATEK SHALL NOT BE RESPONSIBLE FOR ANY MEDIATEK DELIVERABLES MADE TO MEET YOUR SPECIFICATIONS OR TO CONFORM TO A PARTICULAR STANDARD OR OPEN FORUM.

Without limiting the generality of the foregoing, MediaTek makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does MediaTek assume any liability arising out of the application or use of any product, circuit or software. You agree that You are solely responsible for the designing, validating and testing Your product incorporating MediaTek's product and ensure such product meets applicable standards and any safety, security or other requirements.

The above T&C and all acts in connection with the T&C or this Document shall be governed, construed and interpreted in accordance with the laws of Taiwan, without giving effect to the principles of conflicts of law.