Thank you for your interest in **onsemi** products.

Your technical document begins on the following pages.

Your Feedback is Important to Us!

Please take a moment to participate in our short survey.

At **onsemi**, we are dedicated to delivering technical content that best meets your needs.

Help Us Improve - Take the Survey

This survey is intended to collect your feedback, capture any issues you may encounter, and to provide improvements you would like to suggest.

We look forward to your feedback.

To learn more about **onsemi**, please visit our website at **www.onsemi.com**

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

TinyLogic UHS D-Type Flip-Flop with 3-STATE Output

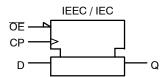
NC7SZ374

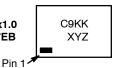
Description

The NC7SZ374 is a single positive edge–triggered D–type CMOS Flip–Flop with 3–STATE output from **onsemi's** Ultra High Speed Series of TinyLogic in the space saving SC–88 6–lead package. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad $V_{\rm CC}$ operating range. The device is specified to operate over the 1.65 V to 5.5 V $V_{\rm CC}$ range. The inputs and output are high impedance when $V_{\rm CC}$ is 0 V. Inputs tolerate voltages up to 5.5 V independent of $V_{\rm CC}$ operating voltage. This single flip–flop will store the state of the D input that meets the setup and hold time requirements on the LOW–to–HIGH Clock (CP) transition. The output tolerates voltages above $V_{\rm CC}$ in the 3–STATE condition.

Features

- Space Saving SC-88 6-Lead Package
- Ultra Small MicroPak™ Leadless Package
- Ultra High Speed: $t_{PD} = 2.6$ ns Typ into 50 pF at 5 V V_{CC}
- High Output Drive: ±24 mA at 3 V V_{CC}
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Matches the Performance of LCX when Operated at 3.3 V V_{CC}
- Power Down High Impedance Inputs / Output
- Overvoltage Tolerant Inputs Facilitate 5 V 3 V Translation
- Patented Noise / EMI Reduction Circuitry Implemented
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant




Figure 1. Logic Symbol

1

MARKING DIAGRAMS

SIP6 1.45x1.0 CASE 127EB

SC-88 CASE 419B-02

C9, Z74 = Specific Device Code

KK = 2-Digit Lot Run Traceability Code XY = 2-Digit Date Code Format

Z = 2-Digit Date Code Forma Z = Assembly Plant Code

M = Date Code* = Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 7 of this data sheet.

NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 7.

Connection Diagrams

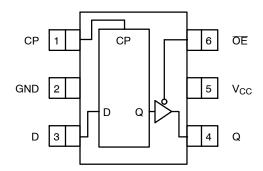


Figure 2. SC-88 (Top View)

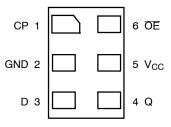
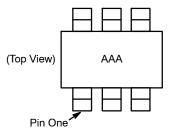



Figure 4. MicroPak (Top Through View)

AAA represents Product Code Top Mark - see ordering code.

NOTE: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

Figure 3. Pin 1 Orientation

PIN DESCRIPTIONS

Pin Name	Description
D	Data Input
СР	Clock Pulse Input
ŌĒ	Output Enable Input
Q	Flip-Flop Output

FUNCTION TABLE

	Output		
СР	D	ŌĒ	Q
	L	L	L
	Н	L	Н
~	Х	L	Q _n
X	X	Н	Z

H = HIGH Logic Level

L = LOW Logic Level

X = Immaterial

Z = High Impedance Q_n = No Change in Data

ABSOLUTE MAXIMUM RATINGS

Symbol	Param	Parameter		Max	Unit
V _{CC}	Supply Voltage		-0.5	+6.5	V
V _{IN}	DC Input Voltage		-0.5	+6.5	V
V _{OUT}	DC Output Voltage		-0.5	+6.5	V
I _{IK}	DC Input Diode Current	V _{IN} < 0 V	-	-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < 0 V	-	-50	mA
I _{OUT}	DC Output Source / Sink Current		-	±50	mA
I _{CC} / I _{GND}	DC V _{CC} / GND Current		-	±50	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
T_J	Junction Temperature under Bias	Junction Temperature under Bias		150	°C
TL	Junction Lead Temperature (Soldering, 10 Seconds)		-	260	°C
P_{D}	Power Dissipation in Still Air SC-88		-	332	mW
		MicroPak	-	812	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply Voltage Operating		1.65	5.5	V
	Supply Voltage Data Retention		1.5	5.5	
V _{IN}	Input Voltage		0	5.5	V
V _{OUT}	Output Voltage	Active State	0	V _{CC}	V
		3-STATE	0	5.5	V
t _r , t _f	Input Rise and Fall Time	V _{CC} = 1.8 V, 2.5 V ±0.2 V	0	20	ns/V
		V _{CC} = 3.3 V ±0.3 V	0	10	
		V _{CC} = 5.5 V ±0.5 V	0	5	
T _A	Operating Temperature		-40	+85	°C
$\theta_{\sf JA}$	Thermal Resistance	SC-88	-	377	°C/W
		MicroPak	_	154	

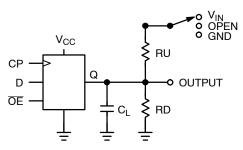
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

1. Unused inputs must be held HIGH or LOW. They may not float.

DC ELECTICAL CHARACTERISTICS

					T _A = +25°C		T _A = -40 to +85°C			
Symbol	Parameter	V _{CC} (V)	Co	nditions	Min	Тур	Max	Min	Max	Unit
V_{IH}	HIGH Level Control	1.65 to 1.95			0.65 V _{CC}	-	-	0.65 V _{CC}	-	٧
	Input Voltage	2.3 to 5.5			0.7 V _{CC}	-	-	0.7 V _{CC}	-	
V_{IL}	LOW Level Control	1.65 to 1.95			-	-	0.35 V _{CC}	-	0.35 V _{CC}	٧
	Input Voltage	2.3 to 5.5			_	-	0.3 V _{CC}	-	0.3 V _{CC}	
V _{OH}	HIGH Level Control	1.65	$V_{IN} = V_{IH}$	$I_{OH} = -100 \mu A$	1.55	1.65	-	1.55	-	V
	Output Voltage	1.8	or V _{IL}		1.7	1.8	-	1.7	-	
		2.3			2.2	2.3	-	2.2	_	
		3.0			2.9	3.0	-	2.9	_	1
		4.5			4.4	4.5	-	4.4	-	
		1.65		I _{OH} = -4 mA	1.24	1.52	-	1.29	-	
		2.3		I _{OH} = -8 mA	1.9	2.15	-	1.9	_	
		3.0		I _{OH} = -16 mA	2.4	2.8	-	2.4	_	1
		3.0		I _{OH} = -24 mA	2.3	2.68	-	2.3	_	
		4.5		I _{OH} = -32 mA	3.8	4.2	-	3.8	_	
V_{OL}	V _{OL} LOW Level Control	1.65	$V_{IN} = V_{IH}$ $I_{OL} = 100 \mu A$ or V_{IL}	I _{OL} = 100 μA	-	0.0	0.1	-	0.1	٧
	Output Voltage	1.8		OI VIL	_	0.0	0.1	-	0.1	
		2.3			_	0.0	0.1	-	0.1	
		3.0			_	0.0	0.1	-	0.1	1
		4.5			_	0.0	0.1	-	0.1	1
		1.65		I _{OL} = 4 mA	-	0.08	0.24	-	0.24	
		2.3		I _{OL} = 8 mA	-	0.10	0.3	-	0.3	
		3.0		I _{OL} = 16 mA	_	0.15	0.4	-	0.4	
		3.0		I _{OL} = 24 mA	_	0.22	0.55	-	0.55	
		4.5		I _{OL} = 32 mA	_	0.22	0.55	-	0.55	
I _{IN}	Input Leakage Current	1.65 to 5.5	$0 \le V_{IN} \le 5$	5.5 V	-	-	±0.1	-	±1.0	μΑ
l _{OZ}	3-STATE Output Leakage	1.65 to 5.5	$V_{IN} = V_{IL} \circ 0 \le V_{OUT} \le 0$	or V _{IH} ≤ 5.5 V	-	-	±0.5	-	±5.0	μΑ
l _{OFF}	Power Off Leakage Current	0.0	V _{IN} or V _{OL}	_{JT} = 5.5 V	-	-	1.0	-	10	μΑ
I _{CC}	Quiescent Supply Current	1.65 to 5.5	V _{IN} = 5.5 \	/, GND	-	-	1.0	-	10.0	μΑ

AC ELECTRICAL CHARACTERISTICS


					T _A = +25°C		T _A = -40	to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Min	Тур	Max	Min	Max	Unit
f _{MAX}	Maximum Clock Frequency	1.65	C _L = 50 pF,	-	_	-	100	_	MHz
	(Figures 5, 7)	1.8	$R_D = 500 \Omega$, $S_1 = Open$	-	_	-	100	-	
		2.5 ±0.2		-	_	-	125	-	
		3.3 ±0.3		-	_	-	150	-	
		5.0 ±0.5		-	_	-	175	-	
t _{PLH} , t _{PHL}	Propagation Delay, CP to Q	1.65	C _L = 15 pF,	-	9.7	1.50	-	16.5	ns
	(Figures 5, 7)	1.8	$R_D = 1 M\Omega$, $S_1 = Open$	-	6.5	10.0	-	11.0	
		2.5 ±0.2		-	3.8	6.5	_	7.0	
		3.3 ±0.3		-	2.8	4.5	_	5.0	
		5.0 ±0.5		-	2.2	3.5	_	3.8	
		3.3 ±0.3	C _L = 50 pF,	-	3.4	5.5	_	6.2	
		5.0 ±0.5	$R_D = 500 \Omega$, $S_1 = Open$	_	2.6	4.0	<u> </u>	4.7	
t _{PZL,} t _{PZH}	Output Enable Time	1.65	C _L = 50 pF,	_	9.0	13.5	_	14.3	ns
	(Figures 5, 8)	1.8	$V_I = 2 \times V_{CC}$, R_U , $R_D = 500 \Omega$, $S_1 = GND$ for t_{PZH} $S_1 = V_I$ for t_{PZL}	_	6.0	9.0	_	9.5	
		2.5 ±0.2		_	3.7	6.0	_	6.6	1
		3.3 ±0.3	, o ₁ = v ₁ ioi ipz <u>c</u>	_	2.8	5.0	_	5.3	
		5.0 ±0.5		-	2.2	3.7	<u> </u>	3.9	
t _{PLZ} , t _{PHZ}	Output Disable Time	1.65	C _L = 50 pF,	_	7.7	12.0	<u> </u>	13.0	ns
	(Figures 5, 8)	1.8	$V_{I} = 2 \times V_{CC},$ $R_{U}, R_{D} = 500 \Omega,$	_	5.1	8.0	_	8.5	
		2.5 ±0.2	$S_1 = \overline{G}ND$ for t_{PHZ} $S_1 = V_I$ for t_{PLZ}	_	3.5	6.0	1 –	6.3	
		3.3 ±0.3		_	2.8	4.5	1 –	4.7	
		5.0 ±0.5		_	2.23	3.7	_	3.9	
t _S	Setup Time, CP to D	2.5 ±0.2	C _L = 50 pF,	_	_	-	2.5	-	ns
	(Figures 5, 9)	3.3 ±0.3	$R_D = 500 \Omega$, $S_1 = Open$	_	_	-	2.0	-	
		5.0 ±0.5			_	-	1.5	-	
t _H	Hold Time, CP to D	2.5 ±0.2	C _L = 50 pF,	-	_	-	1.5	-	ns
	(Figures 5, 9)	3.3 ±0.3	$R_D = 500 \Omega$, $S_1 = Open$	_	_	-	1.5	-	1
		5.0 ±0.5		_	_	-	1.5	-	
t _W	Pulse Width, CP	2.5 ±0.2	C _L = 50 pF,	-	_	-	3.0	-	ns
	(Figures 5, 9)	3.3 ±0.3	$R_D = 500 \Omega,$ $S_1 = Open$	_	_	-	2.8	-	
		5.0 ±0.5		-	-	-	2.5	-	

CAPACITANCE ($T_A = +25^{\circ}C$, f = 1 MHz)

Symbol	Parameter	Condition	Тур	Max	Units
C _{IN}	Input Capacitance	V _{CC} = Open, V _{IN} = 0 V or V _{CC}	3	=	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3 V, V_{IN} = 0 V or V_{CC}	4	-	pF
C _{PD}	Power Dissipation Capacitance (Note 2)	V _{CC} = 3.3 V V _{CC} = 5.0 V	10 12	- -	pF

C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 6)
 C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC}static).

AC Loading and Waveforms

 C_L includes load and stray capacitance Input PRR = 1.0 MHz, t_W = 500 ns.

Figure 5. AC Test Circuit

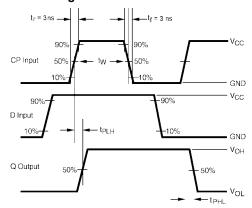
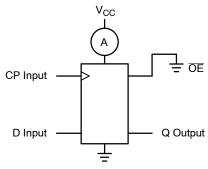



Figure 7. AC Waveforms

CP Input = AC Waveform; $t_r = t_f = 1.8$ ns; CP Input PRR = 10 MHz; Duty Cycle = 50% D Input PRR = 5 MHz; Duty Cycle = 50%.

Figure 6. I_{CCD} Test Circuit

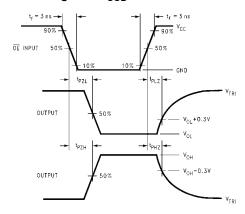


Figure 8. AC Waveforms

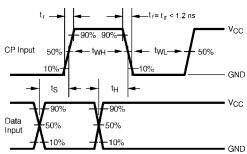


Figure 9. AC Waveforms

ORDERING INFORMATION

Device	Top Mark	Packages	Shipping [†]
NC7SZ374P6X	Z 74	SC-88	3000 / Tape & Reel

DISCONTINUED (Note 3)

NC7SZ374P6X-L22347	Z74	SC-88	3000 / Tape & Reel
NC7SZ374L6X	C9	SIP6, MicroPak	5000 / Tape & Reel
NC7SZ374L6X-L22175	C9	SIP6, MicroPak	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MicroPak is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

^{3.} **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The most current information on these devices may be available on www.onsemi.com.

ISSUE O DATE 31 AUG 2016 2X 0.05 C 1.45 В 2X (1) \bigcirc 0.05 C (0.49)(0.254)1.00 5X \ (0.75)(0.52)TOP VIEW Α 1X <u>1</u> PIN 1 IDENTIFIER /5\ 0.50±0.05 (0.30)6X PIN 1 0.05 RECOMMENED 0.00 LAND PATTERN 0.05 C - 0.35±0.05 С 1.45±0.05 -0.20±0.05 6X DETAIL A 1.0 0.10M|C|B|A

0.05(M)

0.30±0.05 5X

0.35±0.05 5X

(0.125)

4X

SIP6 1.45X1.0 CASE 127EB

NOTES:

1.00±0.05

(0.050)

6X

1. CONFORMS TO JEDEC STANDARD MO-252 VARIATION UAAD

0.5

- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-2009

BOTTOM VIEW

- 4.PIN ONE IDENTIFIER IS 2X LENGTH OF ANY
 - OTHER LINE IN THE MARK CODE LAYOUT.

DOCUMENT NUMBER:	98AON13590G	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SIP6 1.45X1.0		PAGE 1 OF 1		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

0.40±0.05

PIN 1 TERMINAL

DETAIL A

0.075 X 45°

CHAMFER

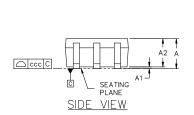
E1

6X 0.30 -

e

В

SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 **ISSUE Z**


DATE 18 APR 2024

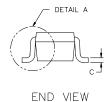
NOTES:

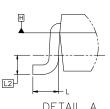
- DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018.
- ALL DIMENSION ARE IN MILLIMETERS.
- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.
- DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H.
 DATUMS A AND B ARE DETERMINED AT DATUM H.
- DIMENSIONS 6 AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. 6.
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION 6 AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

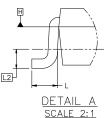
DIM

MIN

TOP VIEW


∆aaa H A−B


<u></u> БЬБ С


⊕ ddd M C A−B D

6X 0.66

2.50

GENERIC MARKING DIAGRAM*

А			1.10	
A1	0.00		0.10	
A2	0.70	0.90	1.00	
b	0.15	0.20	0.25	
С	0.08	0.15	0.22	
D	:	2.00 BSC	;	
E		2.10 BSC		
E1		1.25 BSC		
е		0.65 BSC	;	
L	0.26	0.36	0.46	
L2		0.15 BSC	:	
aaa	0.15			
bbb	0.30			
ccc	0.10			
ddd		0.10		

MILLIMETERS

NOM

RECOMMENDED MOUNTING FOOTPRINT*

FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

XXX = Specific Device Code

= Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

- *Date Code orientation and/or position may vary depending upon manufacturing location.
- *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SC-88 2.00x1.25x0.90, 0.65	5P	PAGE 1 OF 2		

onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 ISSUE Z

DATE 18 APR 2024

STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6: PIN 1. ANODE 2 2. N/C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 7: PIN 1. SOURCE 2 2. DRAIN 2 3. GATE 1 4. SOURCE 1 5. DRAIN 1 6. GATE 2	STYLE 8: CANCELLED	STYLE 9: PIN 1. EMITTER 2 2. EMITTER 1 3. COLLECTOR 1 4. BASE 1 5. BASE 2 6. COLLECTOR 2	STYLE 10: PIN 1. SOURCE 2 2. SOURCE 1 3. GATE 1 4. DRAIN 1 5. DRAIN 2 6. GATE 2	STYLE 11: PIN 1. CATHODE 2 2. CATHODE 2 3. ANODE 1 4. CATHODE 1 5. CATHODE 1 6. ANODE 2	STYLE 12: PIN 1. ANODE 2 2. ANODE 2 3. CATHODE 1 4. ANODE 1 5. ANODE 1 6. CATHODE 2
STYLE 13: PIN 1. ANODE 2. N/C 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 14: PIN 1. VREF 2. GND 3. GND 4. IOUT 5. VEN 6. VCC	STYLE 15: PIN 1. ANODE 1 2. ANODE 2 3. ANODE 3 4. CATHODE 3 5. CATHODE 2 6. CATHODE 1	STYLE 16: PIN 1. BASE 1 2. EMITTER 2 3. COLLECTOR 2 4. BASE 2 5. EMITTER 1 6. COLLECTOR 1	STYLE 17: PIN 1. BASE 1 2. EMITTER 1 3. COLLECTOR 2 4. BASE 2 5. EMITTER 2 6. COLLECTOR 1	STYLE 18: PIN 1. VIN1 2. VCC 3. VOUT2 4. VIN2 5. GND 6. VOUT1
STYLE 19: PIN 1. I OUT 2. GND 3. GND 4. V CC 5. V EN 6. V REF	STYLE 20: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR	STYLE 21: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. N/C 6. CATHODE 1	STYLE 22: PIN 1. D1 (i) 2. GND 3. D2 (i) 4. D2 (c) 5. VBUS 6. D1 (c)	STYLE 23: PIN 1. Vn 2. CH1 3. Vp 4. N/C 5. CH2 6. N/C	STYLE 24: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE
STYLE 25: PIN 1. BASE 1 2. CATHODE 3. COLLECTOR 2 4. BASE 2 5. EMITTER 6. COLLECTOR 1	STYLE 26: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2 6. DRAIN 1	STYLE 27: PIN 1. BASE 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. EMITTER 2 6. COLLECTOR 2	STYLE 28: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 29: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE/ANODE 6. CATHODE	STYLE 30: PIN 1. SOURCE 1 2. DRAIN 2 3. DRAIN 2 4. SOURCE 2 5. GATE 1 6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-88 2.00x1.25x0.90, 0.65P		PAGE 2 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales