MOSFET – Power, Single P-Channel, WDFN8 -30 V

NVTFS012P03P8Z, NVTFWS012P03P8Z

Features

- Small Footprint for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- AEC-Q101 Qualified
- These Devices are Pb-Free, Halogen-Free/BFR-Free and are RoHS Compliant

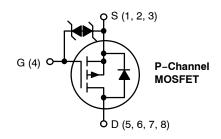
Applications

- Battery Management
- Protection
- Power Load Switch

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parar	Symbol	Value	Unit		
Drain-to-Source Voltag	V_{DSS}	-30	V		
Gate-to-Source Voltage			V_{GS}	±25	V
Continuous Drain	Steady T _A = 25°C		I _D	-11.7	Α
Current R _{0JA} (Notes 1, 3)	State	T _A = 85°C		-8.4	
Power Dissipation R _{θJA} (Notes 1, 3)		T _A = 25°C	P _D	2.40	W
Continuous Drain	Steady T _C = 25°C		I _D	-49	Α
Current R _{θJC}	State	T _C = 85°C	1	-38	
Power Dissipation $R_{\theta JC}$	T _C = 25°C		P_{D}	44	W
Pulsed Drain Current	$T_A = 25$	°C, t _p = 10 μs	I _{DM}	47	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T _L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL RESISTANCE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	52	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	145	
Junction-to-Case	$R_{\theta JC}$	3.3	

- 1. Surface-mounted on FR4 board using 1 in² pad size, 2 oz. Cu pad.
- 2. Surface-mounted on FR4 board using minimum pad size, 2 oz. Cu pad.
- 3. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. Actual continuous current will be limited by thermal & electro–mechanical application board design. $R_{\theta CA}$ is determined by the user's board design.

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
-30 V	11.3 mΩ @ –10 V	-49 A
_30 V	20 mΩ @ -4.5 V	-49 A

ELECTRICAL CONNECTION

WDFN8 (μ8FL) CASE 511AB

WDFNW8 (μ8FL WF) CASE 515AN

MARKING DIAGRAMS

XXXX = Specific Device Code
A = Assembly Location

Y = Year WW = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 5 of this data sheet.

NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 5.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Cond	ition	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				-		-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D =	–250 μΑ	-30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /	I _D = -250 μA, ref to 25°C			-9.9		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -30 V	T _J = 25°C			-10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS}	s = ±25 V			±10	μΑ
ON CHARACTERISTICS (Note 4)	•	•			•		•
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	-250 μA	-1.0		-3.0	V
Threshold Temperature Coefficient	V _{GS} /T _J	I _D = -250 μA, re	ef to 25°C		-4.7		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -10 V, I _[₎ = -10 A		8.3	11.3	mΩ
		V _{GS} = -4.5 V, I	_O = -10 A		13.3	20	1
Forward Transconductance	9FS	$V_{DS} = -5 \text{ V}, I_{D}$	= -10 A		41		S
CHARGES AND CAPACITANCES	-	-			-		-
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = -15 V, f = 1.0 MHz			1535		pF
Output Capacitance	C _{oss}				526		1
Reverse Transfer Capacitance	C _{rss}				506		1
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -15 \text{ V},$ $I_D = -10 \text{ A}$			21		nC
Threshold Gate Charge	Q _{G(TH)}				1.4		nC
Gate-to-Source Charge	Q_{GS}				2.8		1
Gate-to-Drain Charge	Q_{GD}	1			14.8		1
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -10 \text{ V}, V_{DS} = -15 \text{ V},$ $I_D = -10 \text{ A}$			36		nC
SWITCHING CHARACTERISTICS, V	GS = 4.5 V (Note	e 5)			1		•
Turn-On Delay Time	t _{d(on)}				15		ns
Rise Time	t _r	VGS = -4.5 V. VD	n = -15 V.		66		1
Turn-Off Delay Time	t _{d(off)}	$V_{GS} = -4.5 \text{ V}, V_{D}$ $I_{D} = -10 \text{ A}, \text{ R}$	$_{\rm G}$ = 6 Ω		48		1
Fall Time	t _f	1			77		1
SWITCHING CHARACTERISTICS, V	_{GS} = 10 V (Note	5)			•		•
Turn-On Delay Time	t _{d(on)}				7		ns
Rise Time	t _r	V _{GS} = -10 V. V _D	n = -15 V.		17		1
Turn-Off Delay Time	t _{d(off)}	$V_{GS} = -10 \text{ V}, V_{DD} = -15 \text{ V},$ $I_{D} = -10 \text{ A}, R_{G} = 6 \Omega$			89		1
Fall Time	t _f				75		1
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V, T _J = 25°0			0.82	1.3	V
		v GS = 0 v,	T _J = 125°C		0.7		1
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, dl}_{S}/\text{dt} = 0 \text{ V}$	= -100 A/us.		19		ns
Reverse Recovery Charge	Q _{RR}	$I_{S} = -10 \text{ A}$			10		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

^{5.} Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

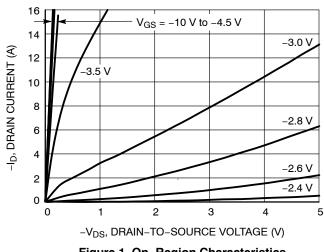


Figure 1. On-Region Characteristics

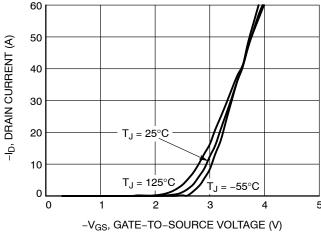


Figure 2. Transfer Characteristics

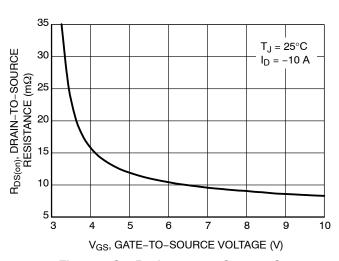


Figure 3. On-Resistance vs. Gate-to-Source Voltage (V)

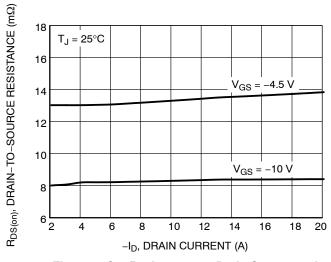


Figure 4. On-Resistance vs. Drain Current and **Gate Voltage**

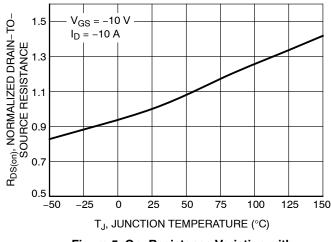


Figure 5. On-Resistance Variation with **Temperature**

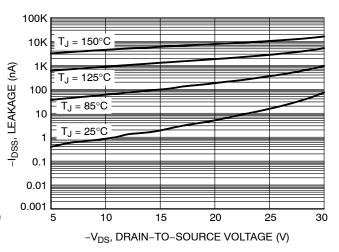


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

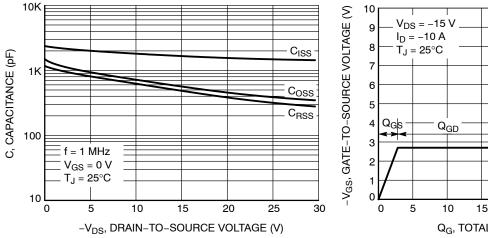


Figure 7. Capacitance Variation

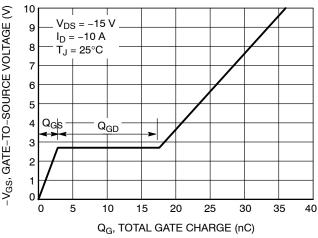


Figure 8. Gate-to-Source vs. Total Charge

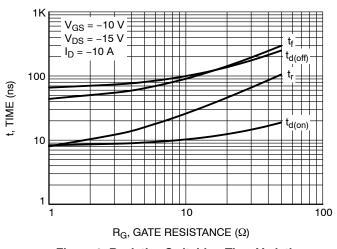


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

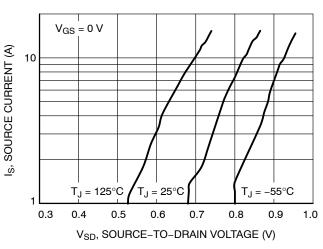


Figure 10. Diode Forward Voltage vs. Current

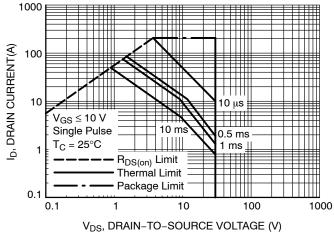


Figure 11. Maximum Rated Forward Biased Safe Operating Area

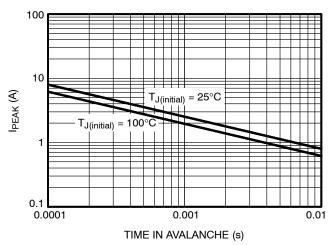


Figure 12. I_{PEAK} vs. Time in Avalanche

TYPICAL CHARACTERISTICS

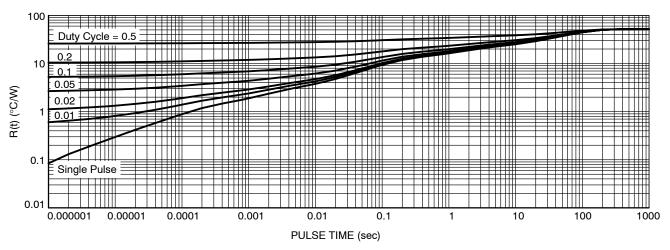


Figure 13. Thermal Characteristics

DEVICE ORDERING INFORMATION

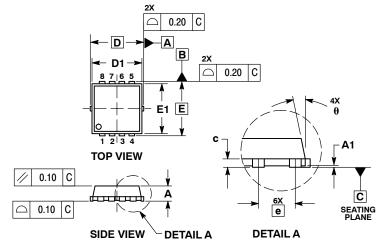
Device	Device Marking	Package	Shipping [†]
NVTFWS012P03P8ZTAG	12PW	WDFN8 (Pb-Free, Wettable Flank)	1500 / Tape & Reel

DISCONTINUED (Note 6)

NVTFS012P03P8ZTAG	12P3	WDFN8	1500 / Tape & Reel
		(Pb-Free)	·

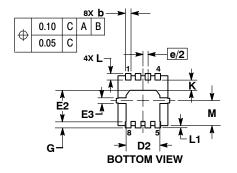
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{6.} **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The most current information on these devices may be available on www.onsemi.com.



SCALE 2:1

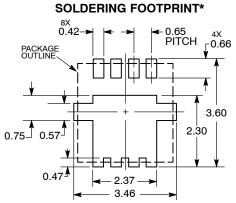
WDFN8 3.3x3.3, 0.65P CASE 511AB ISSUE D


DATE 23 APR 2012

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH
 PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.70	0.75	0.80	0.028	0.030	0.031
A1	0.00		0.05	0.000		0.002
b	0.23	0.30	0.40	0.009	0.012	0.016
С	0.15	0.20	0.25	0.006	0.008	0.010
D		3.30 BSC		0	.130 BSC	;
D1	2.95	3.05	3.15	0.116	0.120	0.124
D2	1.98	2.11	2.24	0.078	0.083	0.088
E		3.30 BSC		O	.130 BSC)
E1	2.95	3.05	3.15	0.116	0.120	0.124
E2	1.47	1.60	1.73	0.058	0.063	0.068
E3	0.23	0.30	0.40	0.009	0.012	0.016
е	0.65 BSC			(0.026 BS0	2
G	0.30	0.41	0.51	0.012	0.016	0.020
K	0.65	0.80	0.95	0.026	0.032	0.037
L	0.30	0.43	0.56	0.012	0.017	0.022
L1	0.06	0.13	0.20	0.002	0.005	0.008
М	1.40	1.50	1.60	0.055	0.059	0.063
θ	0 °		12 °	0 °		12 °



GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code Α = Assembly Location

= Year WW = Work Week = Pb-Free Package

DIMENSION: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON30561E	Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	WDFN8 3.3X3.3, 0.65P		PAGE 1 OF 1

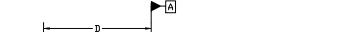
onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

PIN DNE -REFERENCE

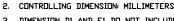
WDFNW8 3.3x3.3, 0.65P (Full-Cut μ8FL WF) CASE 515AN

CASE 515AN ISSUE O

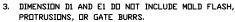

DATE 25 AUG 2020

MAX.

0.59


0.20

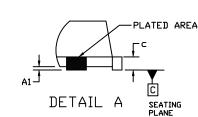
1.60

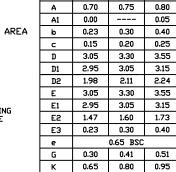

F1

В

DIM

NOTES:




MIN.

1. DIMENSIONING AND TOLERANCING PERASME Y14.5M. 2009.

MILLIMETERS

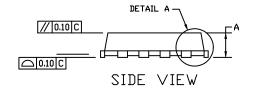
NDM.

0.30

0.06

1.40

1

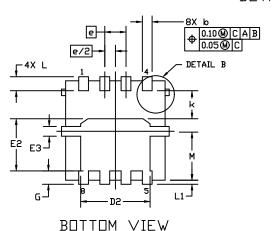

L1

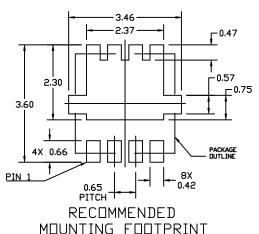
М

0.43

0.13

1.50




3

TOP VIEW

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXX AYWW• XXXX = Specific Device Code

A = Assembly Location

Y = Year

WW = Work Week

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

(Note: Microdot may be in either location)

DOCUMENT NUMBER:	98AON24556H	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WDFNW8 3.3x3.3, 0.65P (Full-Cut μ8FL WF)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales