

Product Description

An excellent alternative to traveling wave tube amplifiers, Qorvo's Spatium™ QPB1316 is a solid state, spatial-combining amplifier with an operating range of 13.4–15.5 GHz while achieving greater than 57 dBm (500 Watts) of instantaneous saturated power. With its maximum performance in output power, gain, efficiency, and power flatness, this Spatium is the ideal building block for microwave high power transmitters for military and commercial applications. Liquid cooling capability provides excellent thermal management and reliable operation.

Qorvo's patented and field-proven Spatium combining technology provides unprecedented Solid-State Power Amplifier (SSPA) performance in a rugged, compact size and weight which reduces total cost of ownership compared to alternative technologies. This product offering combines Qorvo's market leadership in GaN technology and wideband MMIC design, along with our high-count combining techniques, for a best in class solution to power amplification.

Functional Block Diagram

Product Features

Frequency Range: 13.4 – 15.5 GHz
Saturated Output Power: > 57 dBm

Solid State MMIC Reliability

Multi-Element Redundancy

Instant On (no warm-up)

Performance is typical across frequency. Please reference electrical specification table and data plots for more details.

Applications

TWTA Replacement

Ordering Information

Part No.	Description
QPB1316	13.4 – 15.5 GHz Spatium™ Amplifier

Absolute Maximum Ratings

Parameter	Value / Range
Prime Power (V _{DC})*	30 V
Drain Current (ID_DRIVE)	115 A
Output VSWR	3:1
RF Input Power, max.	43 dBm
Storage Temperature	−40 to +85 °C
Coolant Inlet Pressure	80 PSI

Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the device at these conditions is not implied.

Recommended Operating Conditions

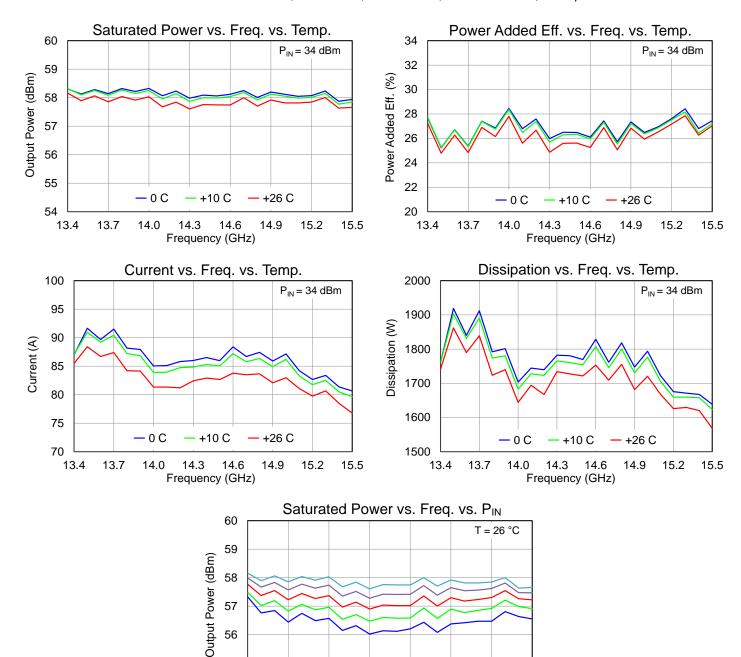
Parameter	Value / Range
Drain Voltage (V _D)	28 V
Quiescent Drain Current (IDQ)	14.4 A
Operating Drain Current (I _D at P _{SAT})	85 A
Ambient Operating Temperature**	−40 to +75 °C
Coolant Input Temperature	0 to +26 °C
Coolant Flow Rate	1.0 to 3.4 GPM

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Test conditions unless otherwise noted: V_D = 28 V, I_{DQ} = 14.4 A, P_{IN} = 34 dBm, T_{COOLANT} = 26 °C, CW Operation

Parameter	Min	Тур	Max	Units
Frequency	13.4		15.5	GHz
Saturated Pout, CW (Pin = 34 dBm)		57.8		dBm
Power-Added Efficiency, CW (P _{IN} = 34 dBm)		26.2		%
Power Gain, CW (P _{IN} = 34 dBm)		23.8		dB
Small Signal Gain		≥ 32.8		dB
Input Return Loss		≥ 8		dB
Output Return Loss		≥ 8		dB
IMD3, CW (1 MHz spacing, POUT/TONE = 49 dBm)		≤ −26		dBc
IMD5, CW (1 MHz spacing, POUT/TONE = 49 dBm)		≤ −34		dBc
Input RF Interface		SMA(F)		
Output RF Interface	WR62 Wa	veguide / UG419)/U Flange	
Weight (Amplifier Unit, Bias Card, Cable, Coolant)		12.0 (5.44)		lbs. (kg)
D:		9.4 x 5.5 x 5.0		inches
Dimensions – Amplifier Unit (L) x (W) x (H)	238.8 x 139.7 x 127.0			millimeters


^{*} Rating for thermal reliability

^{**}Some coolants have freezing temperatures within this range. Allowing coolant to freeze in the device will cause permanent damage.

Typical Performance - Large Signal (CW)

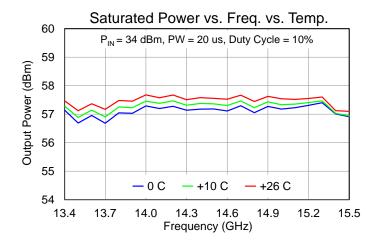
Test conditions unless otherwise noted: V_D = 28 V, I_{DQ} = 14.4 A, P_{IN} = 34 dBm, T_{COOLANT} = 26 °C, CW Operation

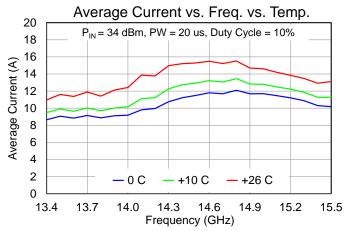
31dBm — 32dBm — 33dBm -

34dBm

30dBm

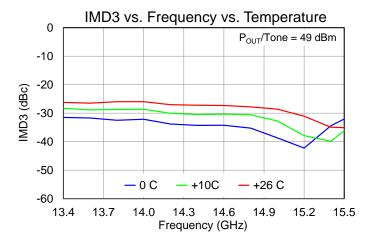
56

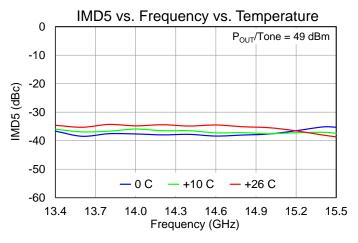

55

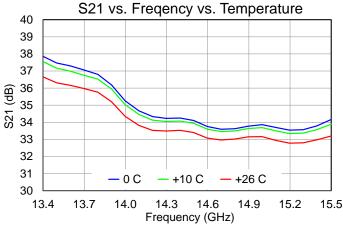

54

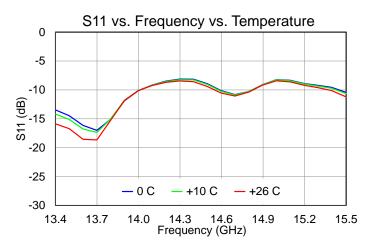
Typical Performance - Large Signal (Pulse)

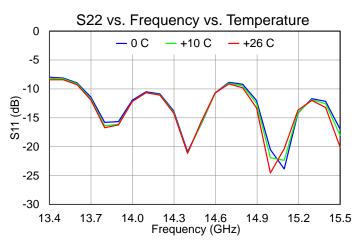
Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DQ} = 14.4 \text{ A}$, Pulsed $P_{IN} = 34 \text{ dBm}$, $T_{COOLANT} = 26 ^{\circ}\text{C}$, PW = 20 us, DC = 10%

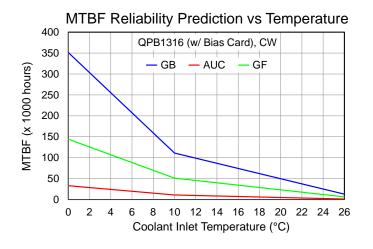


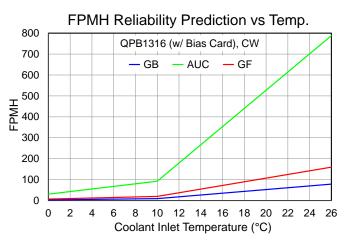


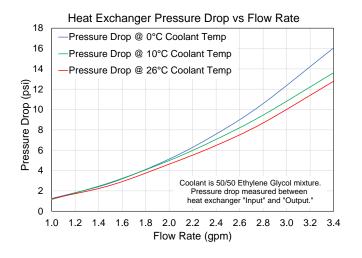



Typical Performance – Linearity, S-Parameters

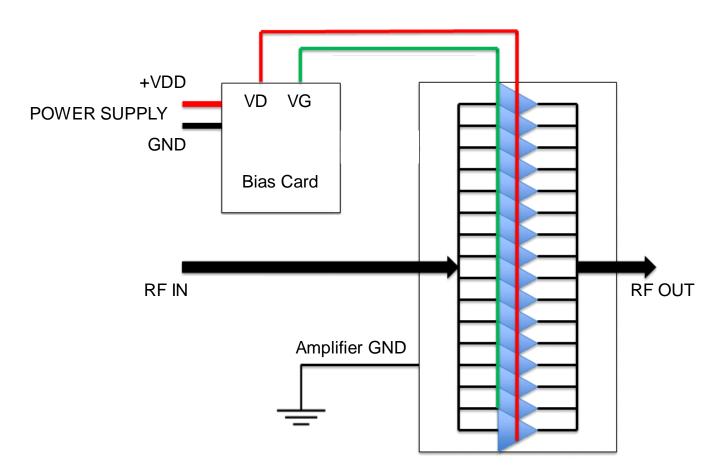

Test conditions unless otherwise noted: V_D = 28 V, I_{DQ} = 14.4 A, T_{COOLANT} = 26 °C, CW Operation, 1 MHz Tone Spacing



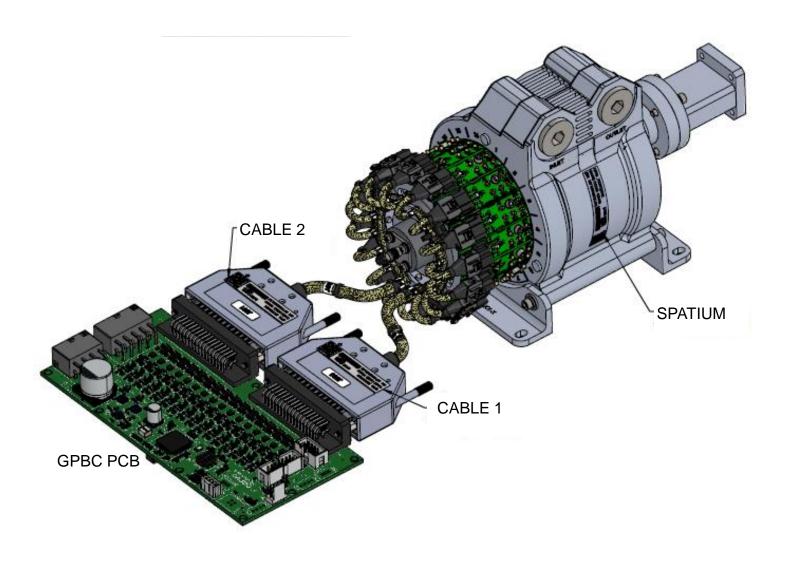



Typical Performance - Reliability

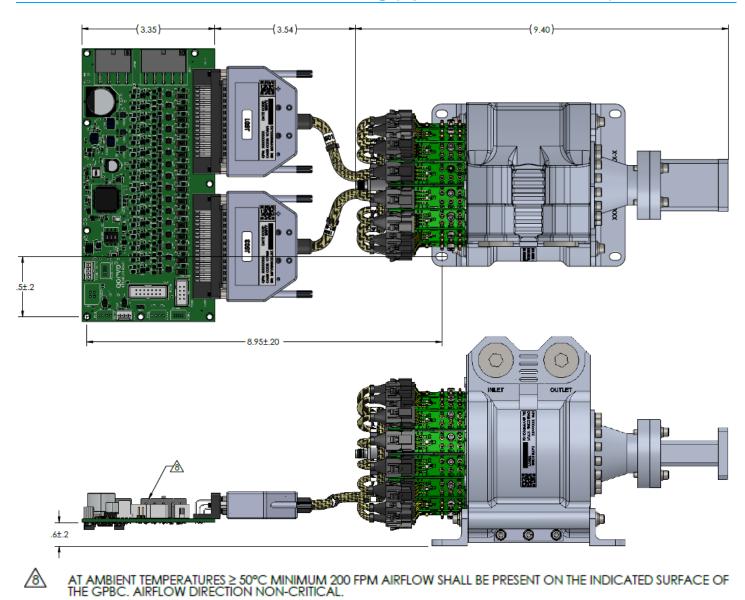
Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DQ} = 14.4 \text{ A}$, $P_{IN} = 34 \text{ dBm}$, CW Operation



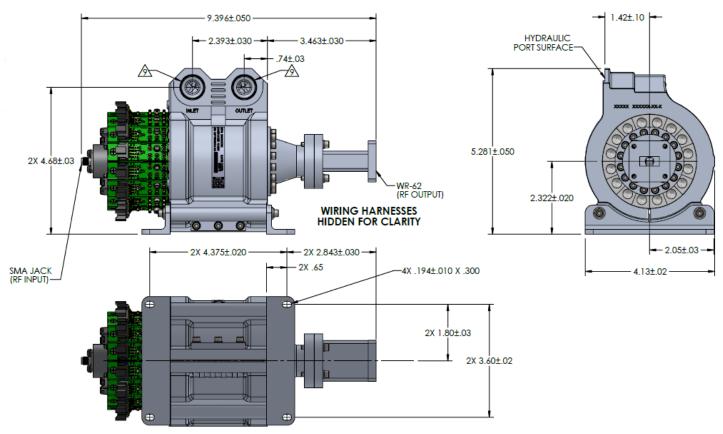
Typical Performance – Heat Exchanger Pressure Drop


Block Diagram and Description

Pin No.	Label	Description
RF In	N/A	SMA (F) Coaxial RF Input.
RF Out	N/A	WR62 Waveguide / UG419/U Flange
Bias Card	P2001, P2003	HARTING connector, 09665527611
POWER SUPPLY +VDD	J2000	MOLEX connector, 76825-0008
POWER SUPPLY GND	J2001	MOLEX connector, 76825-0010

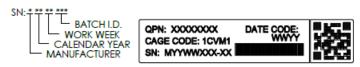


Mechanical Information – Outline Drawing (Spatium™ Unit + GPBC)


Mechanical Information – Outline Drawing (Spatium™ Unit + GPBC)

Dimensions are in INCHES

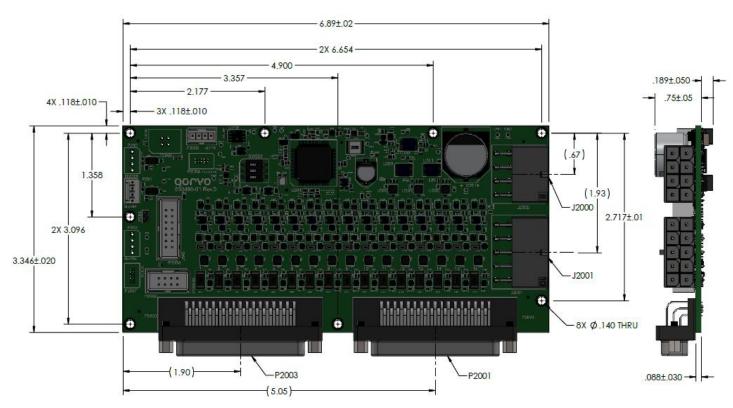
Mechanical Information - Outline Drawing (Spatium™ Unit)


MATING WIRING HARNESSES FOR J2000 (V+) AND J2001 (RTN) SHALL UTILIZE ALL CONTACTS TO ENSURE PROPER LOAD SHARING.

DO NOT CONNECT SPARE PINS.

MAX WEIGHT 12.0 LBS.

DIELECTRIC GREASE SHOULD BE USED BETWEEN WIRING HARNESSES AND ELECTRICAL CONNECTORS.


MARK PG010 (LABEL) PER SPE-000975. THE OPN SHALL BE: 811477-00-XX (XX IS THE REVISION). THE SAME LABEL WITH THE SAME SERIAL NUMBER SHALL BE USED FOR THE MATCHED SET (SPATIUM, 2X CABLES, AND GPBC PCBA). LOCATE LABEL AS SHOWN.

Dimensions are in INCHES

Mechanical Information – Outline Drawing (GPBC)

1 2	VG7 VD8 GND	ABLE J5	PIN NO 26	FUNCTION VD4
1 2	VG7 VD8 GND		26	
2	VD8 GND			VD4
	GND			
			27	GND
3			28	VG2
4	VD7		29	VD3
5	GND		30	GND
6	VD6		31	VD2
7	GND		32	GND
8	VD5		33	VD1
9	VG4		34	VG8
10	VD4		35	VD8
11	GND		36	GND
12	VG1		37	VD7
13	VD3		38	GND
14	GND		39	VD6
15	VD2		40	GND
16	GND		41	VD5
17	VD1		42	VG6
18	VD8		43	VD4
19	GND		44	GND
20	VD7		45	VG3
21	GND		46	VD3
22	VD6		47	GND
23	GND		48	VD2
24	VD5		49	GND
25	VG5		50	VD1

BIAS CARD P2001 (HARTING: 09665527611				
CABLE J501				
PIN NO	FUNCTION		PIN NO	FUNCTION
1	VG15		26	VD12
2	VD16		27	GND
3	GND		28	VG10
4	VD15		29	VD11
5	GND		30	GND
6	VD14		31	VD10
7	GND		32	GND
8	VD13		33	VD9
9	VG12		34	VG16
10	VD12		35	VD16
11	GND		36	GND
12	VG9		37	VD15
13	VD11		38	GND
14	GND		39	VD14
15	VD10		40	GND
16	GND		41	VD13
17	VD9		42	VG14
18	VD16		43	VD12
19	GND		44	GND
20	VD15		45	VG11
21	GND		46	VD11
22	VD14		47	GND
23	GND		48	VD10
24	VD13		49	GND
25	VG13		50	VD9

POWER CONNECTOR MOLEX: 76825-0008		
J2000		
PIN NO	FUNCTION	
1	VDD	
2	VDD	
3	VDD	
4	VDD	
5	VDD	
6	VDD	
7	VDD	
8	VDD	

POWER CONNECTOR MOLEX: 76825-0010		
J2001		
PIN NO	FUNCTION	
1	GND	
2	GND	
3	GND	
4	GND	
5	GND	
6	GND	
7	GND	
8	GND	
9	GND	
10	GND	

Dimensions are in INCHES

Handling Precautions

Caution! ESD-Sensitive Device

RF VOLTAGE HAZARD: Contact with RF fields at the output connector can cause burns or electric shock. High levels of RF/Microwave energy may be present when the unit is operating.

HIGH DC CURRENT HAZARD: High levels of DC current are present when the unit is operating.

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>
Tel: 1-844-890-8163

Email: <u>customer.support@qorvo.com</u>

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2024 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.