

1 A 36V Input Low Supply Current LDO

NO.EA-329-240326

OUTLINE

R1518x is a CMOS-based LDO that specifically designed for automotive applications featuring 1 A output current and 36 V input voltage. In addition to a conventional regulator circuit, R1518x consists of a constant slope circuit as a soft-start function, a fold-back protection circuit, a short current limit circuit, and a thermal shutdown circuit. Besides the low supply current by CMOS, the operating temperature is -40°C to 105°C and the maximum input voltage is 36 V, the R1518x is very suitable for power source of car accessories. R1518x is available in R1518xxxxB/D/E/F with the internally fixed output voltage, and R1518xxxxD/F with the auto-discharge function at standby.

The output voltage of R1518x001C can be set with an external resistor, and the setting range is from 2.5V to Max 20V.R1518xxxxB/C/D internally fixes the soft-start time at 120 μ s (Typ). R1518xxxxE/F can adjust the soft-start time with an external capacitor.

R1518x is available in two packages for ultra high wattage: HSOP-6J and TO-252-5-P2.

FEATURES

Input Voltage Range (Maximum Rating) 3.5 V to 36.0 V (50.0V) • Operating Temperature rang ······· –40°C to 105°C Supply Current Typ. 18 µA Dropout Voltage ······ Typ. 0.7 V (Iout = 1 A, Vout = 5.0 V) • Output Voltage Accuracy ······ ±0.8% (V_{OUT} ≤ 5.0 V) Output Voltage Range R1518xxxxB/D/E/F: 2.5V/3.3V/3.4V/5.0V/6.0V/8.5V/9.0V R1518x001C: Adjustable from 2.5 V to 20.0 V with external resistor Feedback Voltage: 2.5 V Built-in Short Current Limit Circuit Typ. 150 mA Built-in Fold-Back Protection Circuit Min. 1A Built-in Thermal Shutdown Circuit Typ. 160°C Built-in Soft-start Circuit Typ.120 µs R1518xxxxE/F: Adjustable Time Setting with External Capacitors. Ceramic Capacitors can be used R1518xxxxB/D/E/F: 0.1 µF or more R1518x001C: 1.0 µF or more

NO.EA-329-240326

APPLICATIONS

- Power source for home appliances such as refrigerators, rice cookers, electric water warmers.
- Power source for notebook PCs, digital TVs, telephones, private LAN systems.
- Power source for office equipment such as copiers, printers, facsimiles, scanners, and projectors

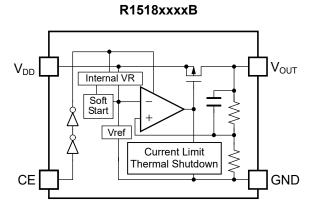
SELECTION GUIDE

The output voltage, version, and package type for this device can be selected at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1518Sxx1*-E2-FE	HSOP-6J	1,000 pcs	Yes	Yes
R1518Jxx1*-T1-FE	TO-252-5-P2	3,000 pcs	Yes	Yes

xx: Specify the set output voltage (V_{SET})

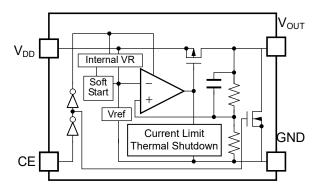
2.5 V (25) / 3.3 V (33) / 3.4 V (34) / 5.0 V (50) / 6.0 V (60) / 8.5 V (85) / 9.0 V (90)

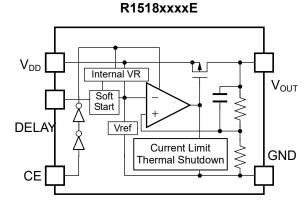

Adjustable output voltage setting type is fixed to (00) Note: R1518x001C-T1-#E only support

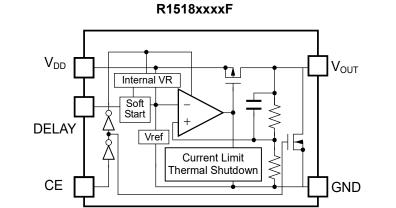
- * : Specify the version with desired functions
 - B: No auto-discharge function
 - C: No auto-discharge function / Adjustable output voltage setting
 - D: Auto-discharge function
 - E: No auto-discharge function / Adjustable soft-start time setting
 - F: Auto-discharge function / Adjustable soft-start time setting

Auto-Discharge function quickly lowers the output voltage to 0 V by releasing the electrical charge in the external capacitor when the chip enable signal is switched from the active mode to the standby mode.

R1518x NO.EA-329-240326

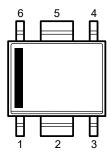

BLOCK DIAGRAMS

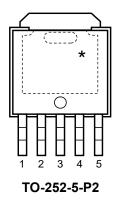



V_{DD} V_{OUT} V_{OUT} V_{FB} V_{FB} V_{FB} Current Limit CE

R1518x001C

R1518xxxxD





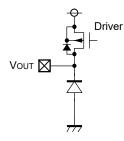
NO.EA-329-240326

PIN DESCRIPTION

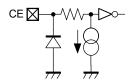
HSOP-6J

HSOP-6J

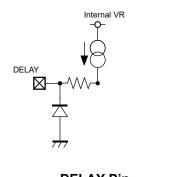
Pin No.	Symbol	Desc	ription		
1	VDD	Input Pin			
2	GND	Ground Pin			
	NC	No Connection	R1518SxxxB/D		
3	VFB	Feedback Pin	R1518S001C		
	DELAY	Adjustable Soft-start Time Pin	R1518SxxxE/F		
4	CE	Chip Enable Pin, Active-high	•		
5	GND	Ground Pin			
6	VOUT	Output Pin			

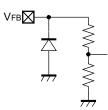

TO-252-5-P2

Pin No.	Symbol	Desc	Description				
1	VDD	Input Pin					
	NC	No Connection	R1518Jxx1B/D				
2	VFB	Feedback Pin	R1518J001C				
	DELAY	Adjustable Soft-start Time Pin	R1518Jxx1E/F				
3	GND	Ground Pin					
4	CE	Chip Enable Pin, Active-high					
5	VOUT	Output Pin					


* The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). The tab is recommended to connect to the ground plane on the board. Otherwise it may be left floating.

R1518x NO.EA-329-240326


PIN EQUIVALENT CIRCUIT DIAGRAMS


V_{OUT} Pin

CE Pin

DELAY Pin (R1518xxxxE/F)

V_{FB} Pin (R1518x001C)

NO.EA-329-240326

ABSOLUTE MAXMUM RATINGS

Symbol	Item	Item		Unit
VIN	Input Voltage		-0.3 to 50	V
Vin	Peak Input Voltage ⁽¹⁾		60	V
VCE	Input Voltage (CE Pin)		-0.3 to 50	V
Vfb	Input Voltage (V _{FB} Pin)		-0.3 to 50	V
Vout	Output Voltage		-0.3 to V _{IN} + 0.3 ≤ 50	V
Π-	Power Dissipation ⁽²⁾	HSOP-6J	2700	mW
PD	(JEDEC STD.51-7)	TO-252-5-P2	3800	IIIVV
Tj	Junction Temperature Range		-40 to 125	°C
Tstg	Storage Temperature Range		-55 to 125	°C

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damage and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECCOMENDED OPERATING CONDITIONS

Recommended Operating Conditions

Symbol	Parameter	Rating	Unit
V _{IN}	Input Voltage	3.5 to 36	V
Ta	Operating Temperature Range	-40 to 105	°C

	RECOMMENDED OPERATING CONDITIONS
recommended operating operating conditions, ever	ent should be designed that the mounted semiconductor devices operate within the conditions. The semiconductor devices cannot operate normally over the recommended en if they are used over such ratings by momentary electronic noise or surge. And the ay receive serious damage when they continue to operate over the recommended operating

⁽¹⁾ Duration time = 200 ms

⁽²⁾ Refer to POWER DISSIPATION for detailed information

NO.EA-329-240326

ELECTRICAL CHARACTERISTICS

 V_{IN} = V_{SET} + 1.0 V, I_{OUT} = 1 mA, C_{IN} = C_{OUT} = 0.1 μ F, unless otherwise noted.

The specifications surrounded by are guaranteed by design engineering at $-40^{\circ}C \le Ta \le 105^{\circ}C$.

Symbol	ltem	Conditio	ns	Min.	Тур.	Max.	Unit
- ,			V _{SET} ≤ 5.0 V	×0.992	<u> </u>	×1.008	V
		Ta = 25°C	V _{SET} > 5.0 V	×0.99		×1.01	V
Vout	Output Voltage	-40°C ≤ Ta ≤ 105°C	V _{SET} ≤ 5.0 V	×0.982		×1.018	V
		-40 C ≤ Ta ≤ 105 C	V _{SET} > 5.0 V	×0.98		×1.02	V
ΔV out	Load Regulation	V _{IN} = V _{SET} + 2.0 V, 1mA	≤ I _{OUT} ≤ 250 mA	-15	3	25	mV
/∆Iout		V _{IN} = V _{SET} + 2.0 V, 1m	$A \le I_{OUT} \le 1 A$	-60	10	60	mV
VDIF	Dropout Voltage	І _{ОUT} = 1 А				roduct-s naracteri	
Iss	Supply Current	I _{OUT} = 0 mA			18	36	μA
Istandby	Standby Current	V _{CE} = 0 V			0.1	2.0	μA
ΔVουτ /ΔVin	Line Regulation	V_{SET} + 0.5 V ≤ V _{IN} ≤ 36 Under the condition of			0.01	0.02	%/V
ΔV _{ουτ} /ΔTa	Output Voltage Temperature Coefficient	-40°C ≤ Ta ≤ 105°C			±60		ppm /°C
ILIM	Output Current Limit	V _{IN} = V _{SET} +2.0 V		1			А
lsc	Short Current Limit	V _{IN} =5.0 V, V _{OUT} = 0 V			150		mA
I ==	CE Pull-down Current	V _{CE} = 5.0 V			0.2	0.6	μA
PD		V _{CE} = 36 V			0.5	1.3	μA
t _{D1}	Soft-start Time 1				120		μs
VCEH	CE Input Voltage "H"			2.2			V
V _{CEL}	CE Input Voltage "L"					1.0	V
T _{TSD}	Thermal Shutdown Temperature	Junction Temperature			160		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temperature	_		135		°C
RLOW	Low Output Nch Tr. ON Resistance (R1518xxxxD)	V _{IN} = 14.0 V, V _{CE} = 0 V	/		3.2		kΩ

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj \approx Ta = 25°C) except for Output Voltage Temperature Coefficient and Soft-start Time 1.

NO.EA-329-240326

 $V_{IN} = V_{FB} (= 2.5 \text{ V}) + 1.0 \text{ V} = 3.5 \text{ V}, I_{OUT} = 1 \text{ mA}, C_{IN} = 0.1 \mu\text{F}, \text{COUT} = 1.0 \mu\text{F}$ unless otherwise noted. The specifications surrounded by are guaranteed by design engineering at -40°C ≤ Ta ≤ 105°C.

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
		Ta = 25°C	2.480		2.520	V
Vfb	Feedback Voltage	-40°C ≤ Ta ≤ 105°C	2.455		2.545	V
ΔVουτ	Load Regulation	$V_{IN} = 4.5 V,$ $1mA \le I_{OUT} \le 250 mA$	-10	3	10	mV
/ΔΙουτ		$V_{IN} = 4.5 V$, 1 mA $\leq I_{OUT} \leq 1 A$	-25	5	35	mV
VDIF	Dropout Voltage	Іоит = 1 А		1.0	1.8	V
Iss	Supply Current	I _{OUT} = 0 mA		18	36	μA
Istandby	Standby Current	V _{CE} = 0 V		0.1	2.0	μA
ΔV ουτ / ΔV in	Line Regulation	$3.5 \text{ V} \leq \text{V}_{\text{IN}} \leq 36 \text{ V}$		0.01	0.02	%/V
ΔVουτ /∆Ta	Output Voltage Temperature Coefficient	-40°C ≤ Ta ≤ 105°C		±60		ppm /°C
ILIM	Output Current Limit	V _{IN} = 4.5 V	1			Α
Isc	Short Current Limit	$V_{CE} = 5.0 \text{ V}, V_{OUT} = V_{FB} = 0 \text{ V}$		150		mA
		V _{CE} = 5.0 V		0.2	0.6	μA
I _{PD}	CE Pull-down Current	V _{CE} = 36 V		0.5	1.3	μA
t _{D1}	Soft-start Time 1			120		μs
VCEH	CE Input Voltage "H"		2.2			V
V _{CEL}	CE Input Voltage "L"				1.0	V
T _{TSD}	Thermal Shutdown Temperature	Junction Temperature		160		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temperature		135		°C

 $V_{OUT} = V_{FB} = 2.5 V$ (excluding short circuit current)

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj \approx Ta = 25°C) except for Output Voltage Temperature coefficient and Soft-start Time 1.

NO.EA-329-240326

 $V_{IN} = V_{SET} + 1.0 \text{ V}, I_{OUT} = 1 \text{ mA}, C_{IN} = C_{OUT} = 0.1 \mu\text{F}, \text{ unless otherwise noted}.$ The specifications surrounded by are guaranteed by design engineering at -40°C ≤ Ta ≤ 105°C.

R1518xxxxE/F

(Ta = 25°C)

Symbol	ltem	Condition	s	Min.	Тур.	Max.	Unit
			V _{SET} ≤ 5.0 V	×0.992		×1.008	V
		Ta = 25°C	V _{SET} > 5.0 V	×0.99		×1.01	V
Vout	Output Voltage	10°0 4 T 4 105°0	V _{SET} ≤ 5.0 V	×0.982		×1.018	V
		−40°C ≤ Ta ≤ 105°C	V _{SET} > 5.0 V	×0.98		×1.02	V
ΔV_{OUT}	Load Regulation	V _{IN} = V _{SET} +2.0 V, 1 mA ≤	I _{OUT} ≤ 250 mA	-15	3	25	mV
/ΔΙουτ		V _{IN} = V _{SET} +2.0 V, 1 mA	. ≤ I _{OUT} ≤ 1 A	-60	10	60	mV
VDIF	Dropout Voltage	Ιουт = 1 Α				roduct-s naracteri	
Iss	Supply Current	I _{OUT} = 0 mA			18	36	μA
Istandby	Standby Current	V _{CE} = 0 V			0.1	2.0	μA
ΔVout /ΔVin	Line Regulation	V_{SET} +0.5 V \leq V _{IN} \leq 36 V Under the condition of V			0.01	0.02	%/V
∆V _{о∪т} /∆Та	Output Voltage Temperature Coefficient	-40°C ≤ Ta ≤ 105°C			±60		ppm /°C
ILIM	Output Current Limit	V _{IN} = V _{SET} +2.0 V		1			А
lsc	Short Current Limit	V _{IN} = 5.0 V, V _{OUT} = 0 V			150		mA
IPD	CE Pull-down Current	V _{CE} = 5.0 V			0.2	0.6	μA
IPD		V _{CE} = 36 V			0.5	1.3	μA
IDELAY	DELAY Current	DELAY = GND		1.5	2.5	3.5	μA
t _{D1}	Soft-start Time 1	DELAY = OPEN			26		μs
t _{D2}	Soft-start Time 2	DELAY = 0.001 μF		210	290	415	μs
VCEH	CE Input Voltage "H"			2.2			V
VCEL	CE Input Voltage "L"					1.0	V
T _{TSD}	Thermal Shutdown Temperature	Junction Temperature			160		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temperature			135		°C
RLOW	Low Output Nch Tr. ON Resistance (R1518xxx1F)	V _{IN} = 14.0 V, V _{CE} = 0 V			3.2		kΩ

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj \approx Ta = 25°C) except for Output Voltage Temperature Coefficient, Soft-start Time 1, and Soft-start Time 2.

(Ta = 25°C)

NO.EA-329-240326

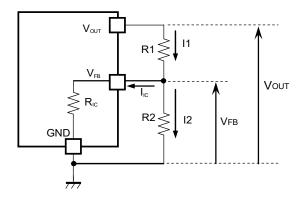
The specifications surrounded by \square are guaranteed by design engineering at -40°C ≤ Ta ≤ 105°C.

Product Name	V _{OUT}	[V] (Ta = :	25°C)	V _{оит} [V] (−40°C ≤ Ta	i ≤ 105°C)		• [V]
	Min.	Тур.	Max.	Min.	Тур.	Max.	Тур.	Max.
R1518x251x	2.480	2.500	2.520	2.455	2.500	2.545	1.00	1.80
R1518x331x	3.274	3.300	3.326	3.241	3.300	3.359	0.90	1.60
R1518x341x	3.373	3.400	3.427	3.339	3.400	3.461	0.90	1.60
R1518x501x	4.960	5.000	5.040	4.910	5.000	5.090	0.70	1 20
R1518x601x	5.940	6.000	6.060	5.880	6.000	6.120	0.70	1.30
R1518x851x	8.415	8.500	8.585	8.330	8.500	8.670	0.65	1.10
R1518x901x	8.910	9.000	9.090	8.820	9.000	9.180	0.65	1.10

R1518xxxxB/D/E/F Product-specific Electrical Characteristics

OPERATION DESCRIPTION

Thermal Shutdown Function


Thermal shutdown function is included in this device. If the junction temperature is more than or equal to 160°C (Typ.), the operation of the regulator would stop. After that, when the junction temperature is less than or equal to 135°C (Typ.), the operation of the regulator would restart. Unless the cause of rising temperature is removed, the regulator repeats on and off, and output waveform would be like consecutive pulses.

Adjustable Output Voltage Setting (R1518x001C)

The output voltage of R1518x001C can be adjusted by using the external divider resistors (R1, R2). By using the following equation, the output voltage (V_{OUT}) can be determined. The voltage which is fixed inside the IC is described as V_{FB} .

 $V_{OUT} = V_{FB} x ((R1 + R2) / R2)$

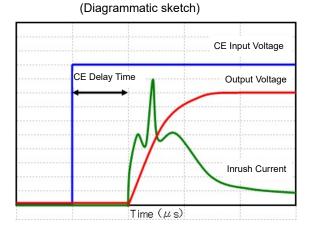
Recommended Range: $2.5 \text{ V} \le \text{V}_{\text{OUT}} \le 20.0 \text{ V}$ V_{FB} = 2.5 V

Output Voltage Adjustment Using External Divider Resistors (R1, R2)

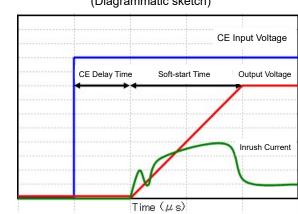
 R_{IC} of the R1518x001C is approximately Typ. 1.35 M Ω (Ta=25°C, guaranteed by design engineering). For better accuracy, setting R1 << R_{IC} reduces errors. The resistance value for R2 should be set to 10 k Ω or lower. It is easily affected by noises when setting the value of R1 and R2 larger, which makes the impedance of V_{FB} pin larger.

 R_{IC} could be affected by the temperature, therefore evaluate the circuit taking the actual conditions of use into account when deciding the resistance values for R1 and R2.

Nisshinbo Micro Devices Inc.

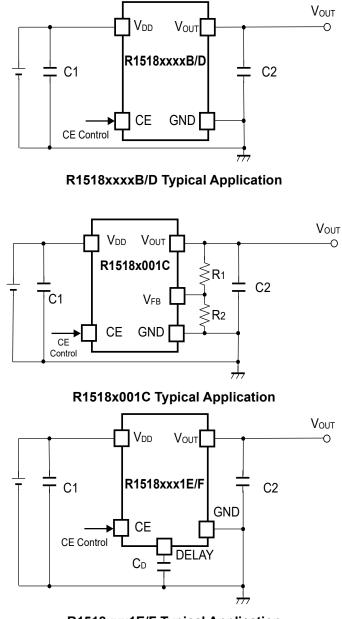

R1518x NO.EA-329-240326

Soft-start Function


R1518x is equipped with a constant slope circuit, which achieves a soft-start function. This circuit allows the output voltage to start up gradually when the CE is turned on. The constant slope circuit minimizes the inrush current at the start-up and also prevents the overshoot of the output voltage. For R1518xxxxB/C/D, the capacitor to create the start-up slope is built in this device that does not require any external components. The start-up time and the start-up slope angle are fixed inside the device. As for R1518xxxxE/F, the soft-start time is adjustable by inserting the external capacitor to DELAY pin. By using the following equation, the relation between the soft-start time t_D [s] and DELAY pin capacitor C_D [F] is determined.

When the capacitor C_D of R1518xxxxE/F is not used, use the DELAY pin as OPEN. At that time, $C_D = 0$ in the above equation, therefore the start-up time is about 26 µs. However, be sure to consider approximately 50 µs of CE delay time.

The capacity (C_D) of the DELAY pin is discharged when V_{IN} is input and CE = L. If the C_D is restarted without being discharged, the soft start time may be shorter than the set time.

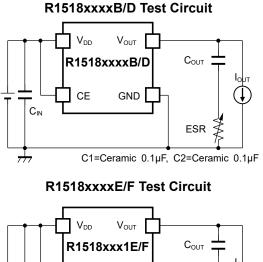

Conventional Inrush Current Limit Circuit

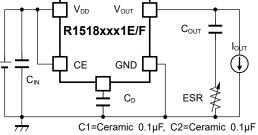
Constant Slope Circuit (Diagrammatic sketch)

APPLICATION INFORMATION

TYPICAL APPLICATION

R1518xxx1E/F Typical Application

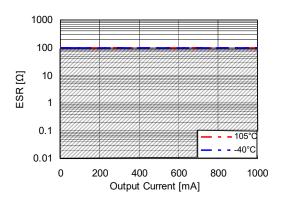

NO.EA-329-240326


External Components :

Symbol	Description
R1518xxxxB/D/E	:/F
C1 (C _{IN})	0.1µF (Ceramic)
С2 (Соит)	0.1µF (Ceramic)
R1518x001C	
C1 (C _{IN})	0.1µF (Ceramic)
С2 (Соит)	1.0µF (Ceramic)

ESR vs. Output Current

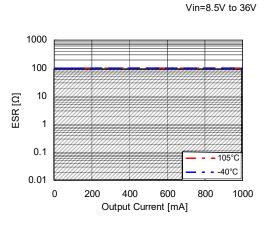
It is recommended that a ceramic type capacitor be used for this device. However, other types of capacitors having lower ESR can also be used. The relation between the output current (I_{OUT}) and the ESR of output capacitor is shown below.



Measurement conditions

Frequency Band: 10 Hz to 2 MHz Measurement Temperature: -40° C to 105° C Hatched area: Noise level is 40 μ V (average) or below Capacitor: C1 = Ceramic 0.1 μ F, C2 = 0.1 μ F

R1518x25xx Output Current IOUT vs. ESR



Vin=2.5V to 36V

R1518x001C Test Circuit

R1518x85xx Output Current IOUT vs. ESR

TECHNICAL NOTES

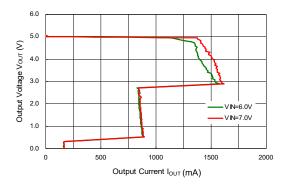
Phase Compensation

In LDO regulators, phase compensation is provided to secure stable operation even when the load current is varied. For this purpose, use 0.1 μ F or more (R1518xxxxB/D/E/F), 1.0 μ F or more (R1518x001C) of the capacitor C2. When using a tantalum type capacitor and the ESR (Equivalent Series Resistance) value is large, the output might be unstable. Evaluate the circuit including consideration of frequency characteristics. For the externally adjustable output voltage type (R1518x001C), use 10 k Ω or lower resistance R2.

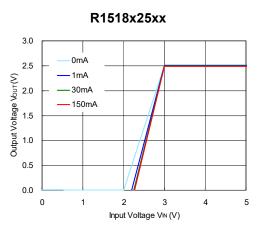
PCB Layout

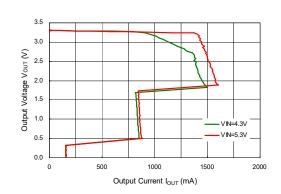
Ensure the V_{DD} and GND lines are sufficiently robust. If their impedance is too high, noise pickup or unstable operation may result. Connect 0.1 μ F or more of the capacitor C1 between the V_{DD} and GND, and as close as possible to the pins.

In addition, connect the capacitor C2 between V_{OUT} and GND, and as close as possible to the pins.

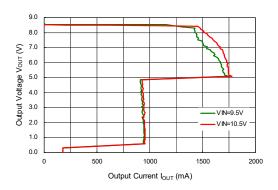

TYPICAL CHARACTERISTICS

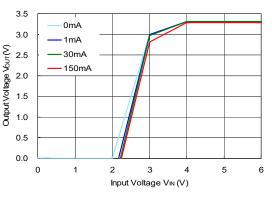
1) Output Voltage vs. Output Current (Ta = 25°C)


Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

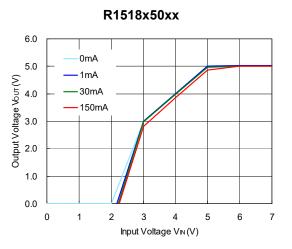

R1518x25xx, R1518x001C 3.0 2.5 Output Voltage Vour (V) 2.0 1.5 1.0 VIN=3.5V VIN=4.5V 0.5 0.0 0 500 1000 1500 2000 Output Current I_{OUT} (mA)

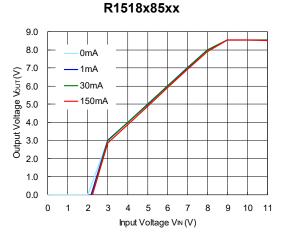
R1518x50xx

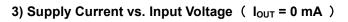

2) Output Voltage vs. Input Voltage (Ta = 25°C)

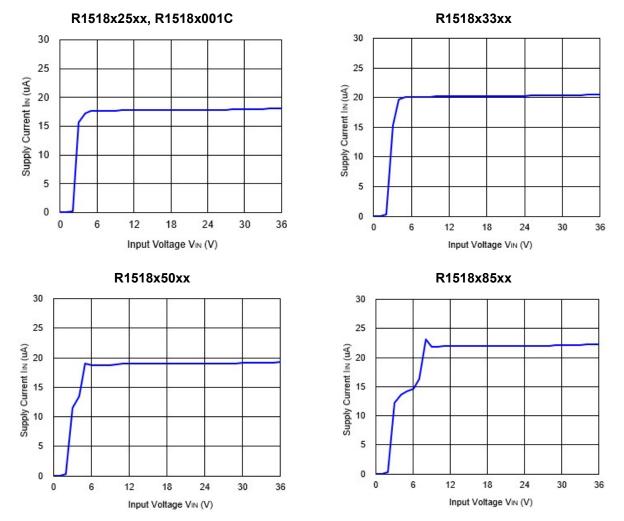


R1518x33xx


R1518x85xx







NO.EA-329-240326

100

NO.EA-329-240326

R1518x33xx

3.366

3.333

3.300

3.267

3.234

8.670

8.585

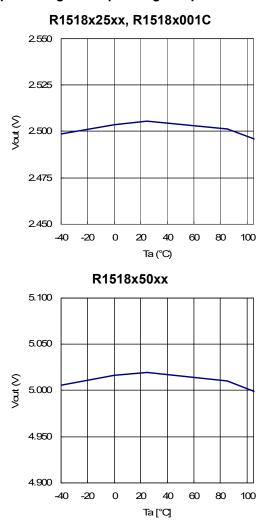
8.500

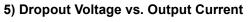
8.415

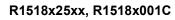
8.330

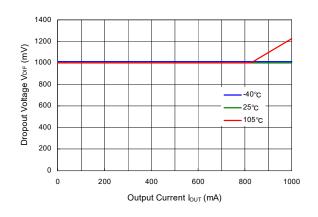
-40 -20

Vout (V)


-40 -20


0 20 40 60 80

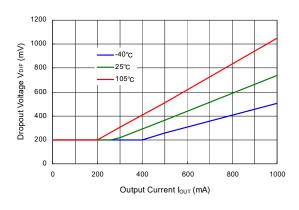

R1518x85xx


Ta (°C)

Vaut (V)

R1518x33xx

0 20

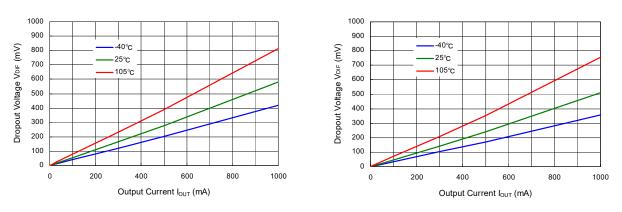

60

80

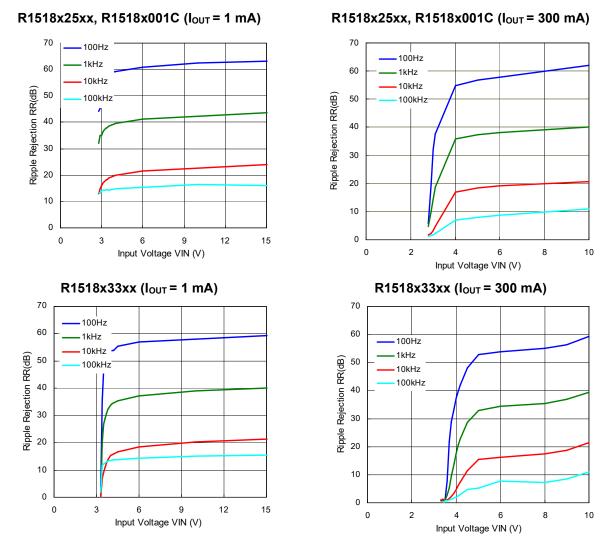
100

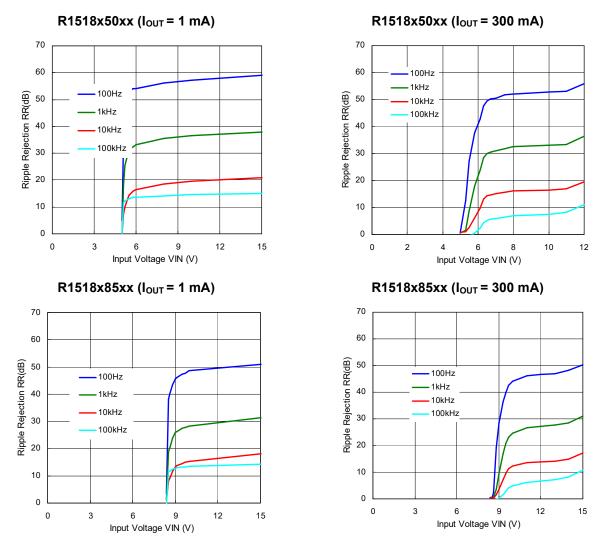
40

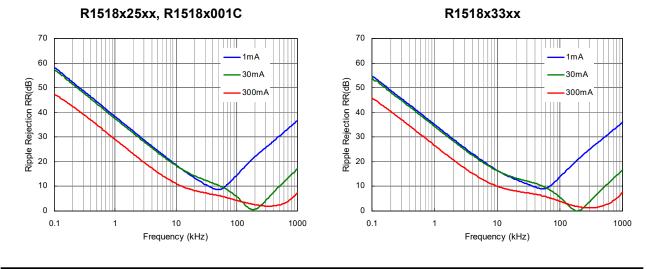
Ta [°C]



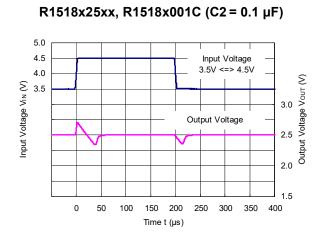
4) Output Voltage vs. Operating Temperature

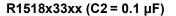

NO.EA-329-240326

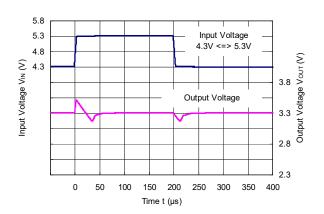

R1518x85xx

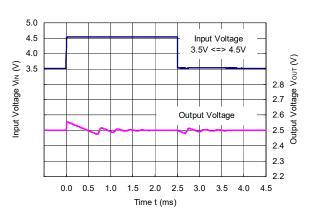


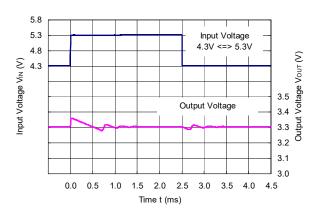

NO.EA-329-240326






NO.EA-329-240326


8) Input Transient Response (Ta = 25°C, I_{OUT} = 1 mA, tr = tf = 5 μ s)



R1518x25xx, R1518x001C (C2 = 10 µF)

R1518x33xx (C2 = 10 µF)

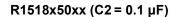
0utput Voltage Vour (V)

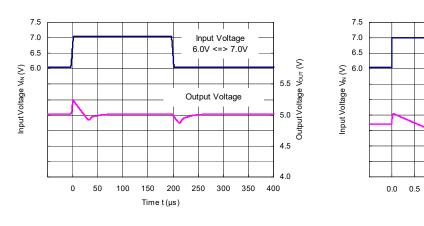
4.9 4.8

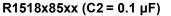
4.7

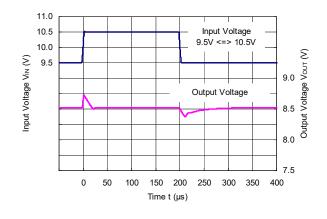
4.5

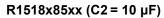
NO.EA-329-240326

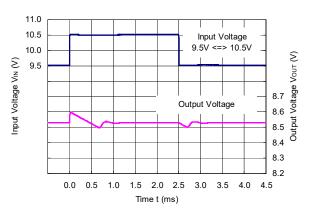

Input Voltage

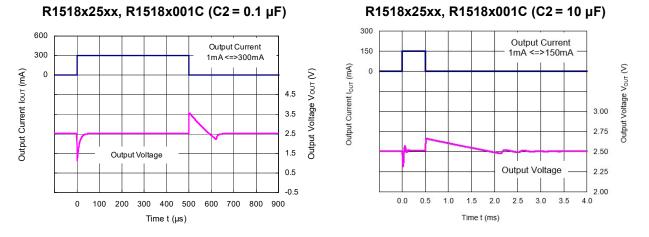

6.0V <=> 7.0V


3.5 4.0

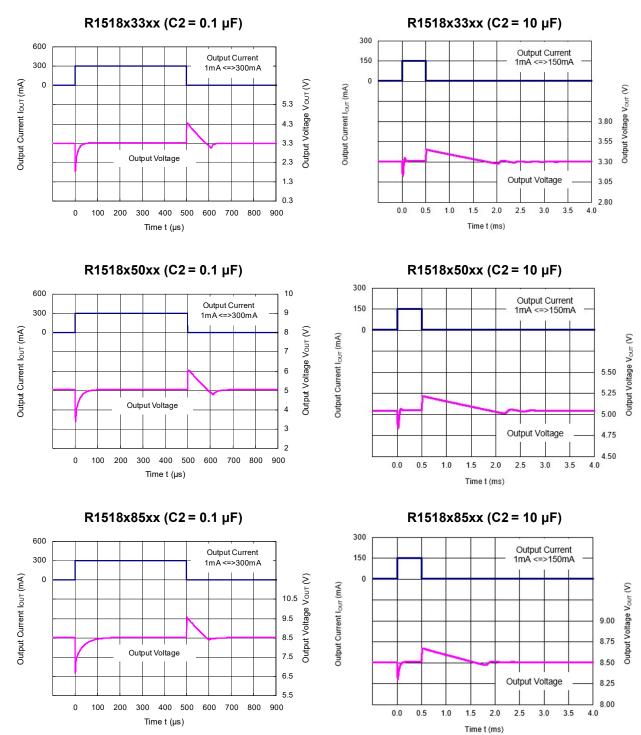

Output Voltage

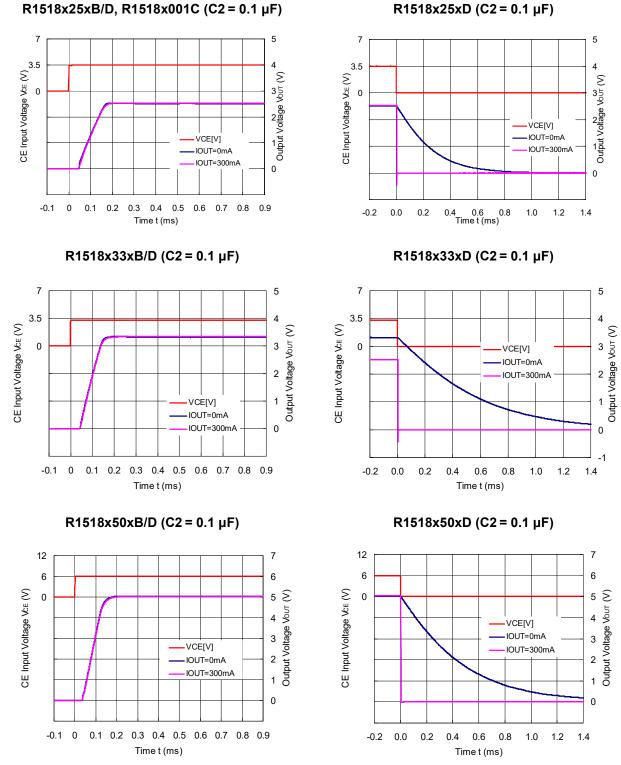

R1518x50xx (C2 = 10 μ F)





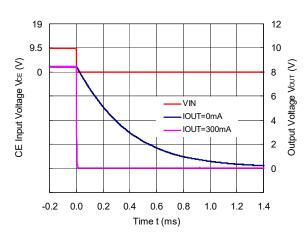
Time t (ms)


1.0 1.5 2.0 2.5 3.0


9) Load Transient Response (Ta = 25° C, V_{IN} = V_{OUT} + 1.0 V, tr = tf = 0.5 µs)

NO.EA-329-240326

NO.EA-329-240326



10) CE Transient Response (Ta = 25°C)

R1518x25xB/D, R1518x001C (C2 = 0.1 µF)

NO.EA-329-240326

R1518x85xD (C2 = 0.1 μF)

VCE[V]

-IOUT=0mA

IOUT=300mA

R1518x85xB/D (C2 = 0.1μ F)

19

9.5

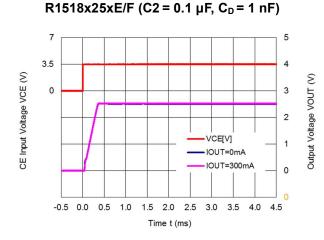
0

CE Input Voltage VcE (V)

12

10

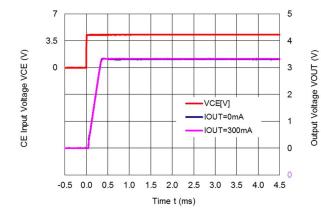
8

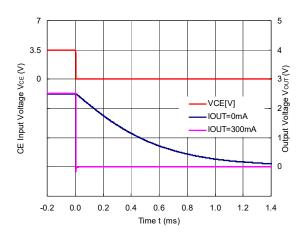

6

4

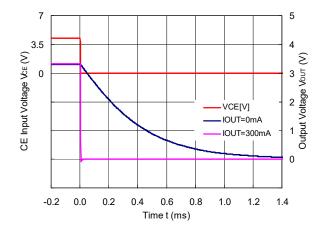
2

0

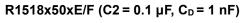

Output Voltage Vour (V)

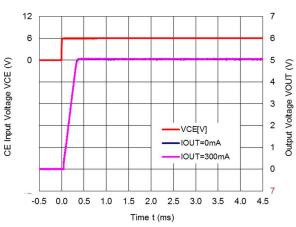

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

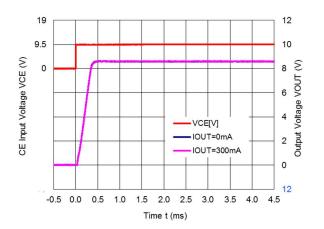
Time t (ms)

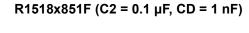

R1518x33xE/F (C2 = 0.1 μ F, C_D = 1 nF)

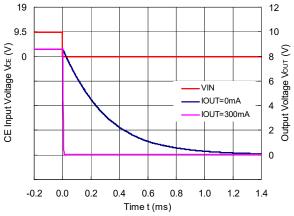
R1518x25xF (C2 = 0.1 μ F, C_D = 1 nF)




R1518x33xF (C2 = 0.1 μ F, C_D = 1 nF)


NO.EA-329-240326


R1518x50xF (C2 = 0.1 μ F, C_D = 1 nF) 12 7 6 6 CE Input Voltage VcE (V) 1 7 5 5 4 5 5 Output Voltage Vour (V) 0 VCE[V] IOUT=0mA IOUT=300mA 0 -0.2 0.0 0.2 1.2 0.4 0.6 0.8 1.0 1.4 Time t (ms)



R1518x851E/F (C2 = 0.1 μ F, C_D = 1 nF)

1500

1400

1300

1100

1000

900

800

700

600

500

400

300

200

100

-100

0

1200 E

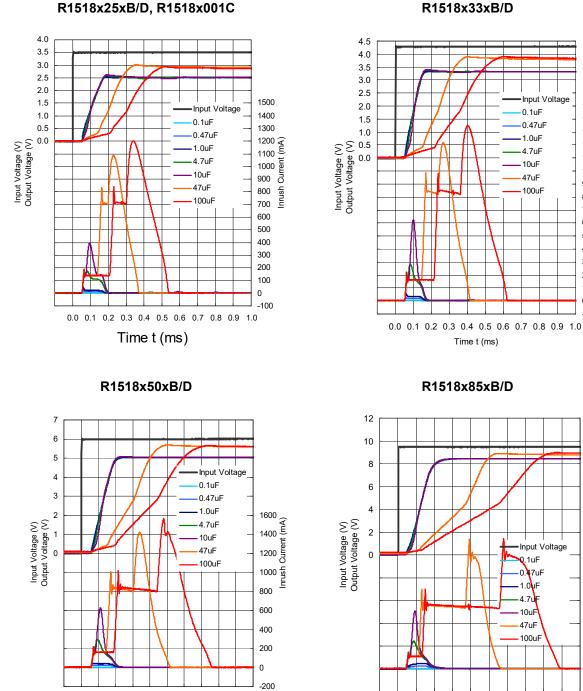
Inrush Current

NO.EA-329-240326

Input Voltage

0.1uF

0.47uF


1.0uF

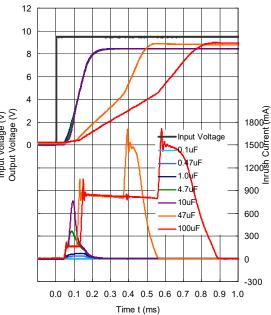
4.7uF

10uF

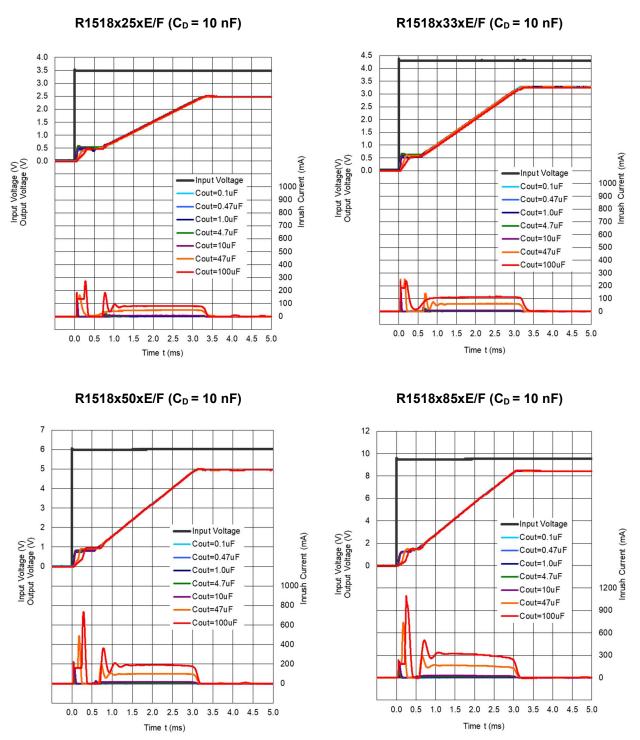
47uF

100uF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0


Time t (ms)

11) Inrush Current Prevention Circuit (Ta = 25°C, I_{OUT} = 1 mA)


R1518x33xB/D

R1518x85xB/D

Time t (ms)

NO.EA-329-240326

NO. EY-329-230124

PACKAGE INFORMATION

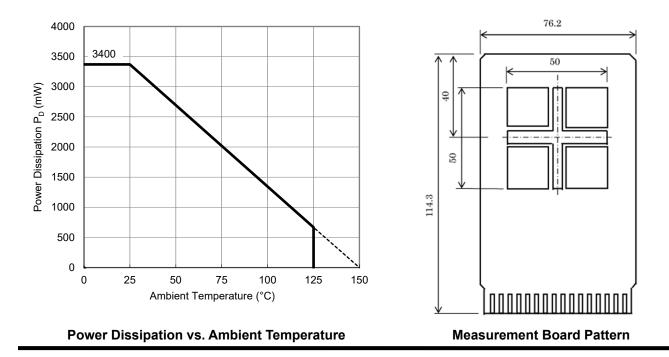
POWER DISSIPATION (HSOP-6J)

Ver. A

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

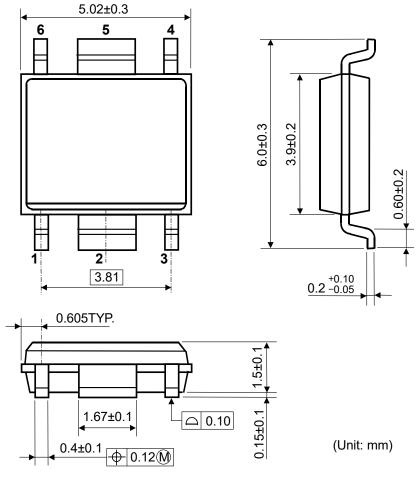
Item	Measurement Conditions	
Environment	Mounting on Board (Wind Velocity = 0 m/s)	
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)	
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm	
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square	
Through-holes	φ 0.3 mm × 28 pcs	

Measurement Conditions


Measurement Result

(Ta = 25°C, Tjmax = 150°C)

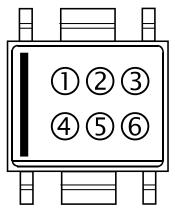
	(1a – 25 0, Tjinax – 156 0)
Item	Measurement Result
Power Dissipation	3400 mW
Thermal Resistance (θja)	θja = 37°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 7°C/W


θja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter

NO. EY-329-230124

PACKAGE DIMENSIONS (HSOP-6J)


HSOP-6J Package Dimensions

PART MARKINGS

R1518S

MK-R1518S-JYEY-B

①②③④: Product Code ... <u>Refer to "*R1518S MARK SPECIFICATION TABLE (HSOP-6J)*"</u>
⑤⑥: Lot Number ... Alphanumeric Serial Number

HSOP-6J Part Markings

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.

PART MARKINGS

R1518S

MK-R1518S-JYEY-B

R1518S MARK SPECIFICATION TABLE (HSOP-6J)

R1518Sxx1B

Product Name	0234	V _{SET}
R1518S251B	W 1 2 5	2.5 V
R1518S331B	W 1 3 3	3.3 V
R1518S341B	W 1 3 4	3.4 V
R1518S501B	W 1 5 0	5.0 V
R1518S601B	W 1 6 0	6.0 V
R1518S851B	W 1 8 5	8.5 V
R1518S901B	W 1 9 0	9.0 V

R1518S001C

Product Name	0234	V_{SET}
R1518S001C	W 2 0 1	-

R1518Sxx1D

Product Name	1234	VSET
R1518S251D	W 3 2 5	2.5 V
R1518S331D	W 3 3 3	3.3 V
R1518S341D	W 3 3 4	3.4 V
R1518S501D	W 3 5 0	5.0 V
R1518S601D	W 3 6 0	6.0 V
R1518S851D	W 3 8 5	8.5 V
R1518S901D	W 3 9 0	9.0 V

R1518Sxx1E		
Product Name	0234	V _{SET}
R1518S251E	W 4 2 5	2.5 V
R1518S331E	W 4 3 3	3.3 V
R1518S341E	W 4 3 4	3.4 V
R1518S501E	W 4 5 0	5.0 V
R1518S601E	W 4 6 0	6.0 V
R1518S851E	W 4 8 5	8.5 V
R1518S901E	W 4 9 0	9.0 V

R1518Sxx1F

Product Name	0234	V _{SET}
R1518S251F	W 5 2 5	2.5 V
R1518S331F	W 5 3 3	3.3 V
R1518S341F	W 5 3 4	3.4 V
R1518S501F	W 5 5 0	5.0 V
R1518S601F	W 5 6 0	6.0 V
R1518S851F	W 5 8 5	8.5 V
R1518S901F	W 5 9 0	9.0 V

POWER DISSIPATION

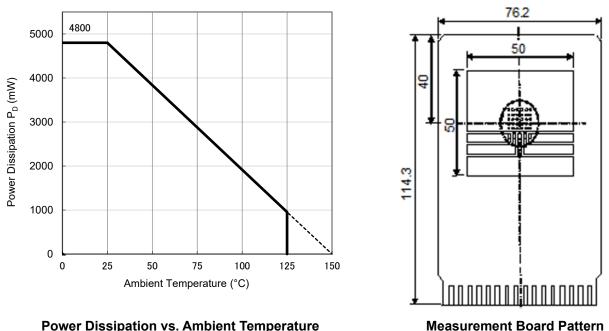
TO-252-5-P2

PD-TO-252-5-P2-(125150)-JE-B

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51.

Measurement Conditions

ltem	Measurement Conditions
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes	φ 0.4 mm × 30 pcs

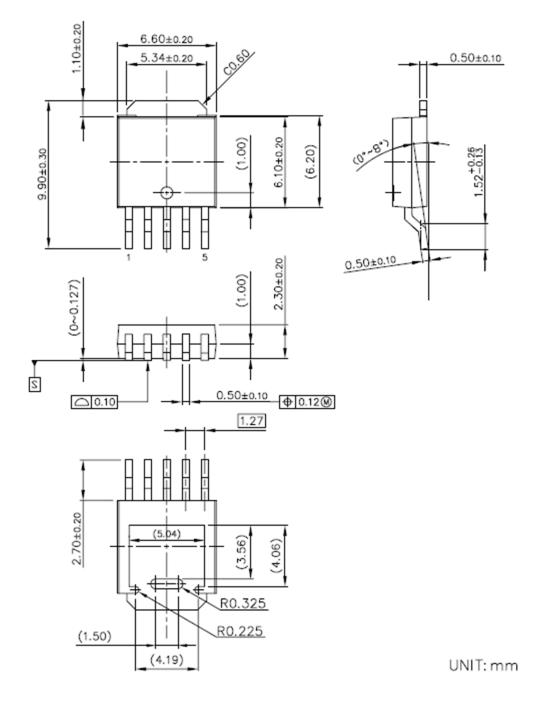

Measurement Result

(Ta = 25°C, Tjmax = 150°C)

ltem	Measurement Result
Power Dissipation	4800 mW
Thermal Resistance (θ ja)	θja = 26°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 7°C/W

θja: Junction-to-Ambient Thermal Resistance

wjt: Junction-to-Top Thermal Characterization Parameter

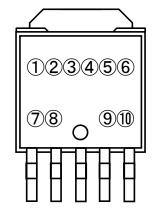


Power Dissipation vs. Ambient Temperature

NO. EY-329-230124

PACKAGE DIMENSIONS (TO-252-5-P2)

Ver. A


TO-252-5-P2 Package Dimensions

PART MARKINGS

R1518J

MK-R1518J-JYEY-B

12345678: Product Code ... Refer to "R1518J MARK SPECIFICATION TABLE (TO-252-5-P2)" 91: Lot Number ... Alphanumeric Serial Number

TO-252-5-P2 Part Markings

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.

PART MARKINGS

R1518J

MK-R1518J-JYEY-B

R1518J MARK SPECIFICATION TABLE (TO-252-5-P2) Note: ⑧Underbar indicates a blank

R1518Jxx1B

Product Name	02345678	V_{SET}
R1518J251B	L1J251B_	2.5 V
R1518J331B	L1J331B_	3.3 V
R1518J341B	L1J341B_	3.4 V
R1518J501B	L1J501B_	5.0 V
R1518J601B	L1J601B_	6.0 V
R1518J851B	L1J851B_	8.5 V
R1518J901B	L1J901B_	9.0 V

R1518J001C

Product Name	02345678	V _{SET}
R1518J001C	L2J001C_	-

R1518Jxx1D

Product Name	02345678	V _{SET}
R1518J251D	L3J251D_	2.5 V
R1518J331D	L3J331D_	3.3 V
R1518J341D	L3J341D_	3.4 V
R1518J501D	L3J501D_	5.0 V
R1518J601D	L3J601D_	6.0 V
R1518J851D	L3J851D_	8.5 V
R1518J901D	L3J901D_	9.0 V

R1518Jxx1E

Product Name	02345678	V _{SET}
R1518J251E	L4J251E_	2.5 V
R1518J331E	L4J331E_	3.3 V
R1518J341E	L4J341E_	3.4 V
R1518J501E	L4J501E_	5.0 V
R1518J601E	L4J601E_	6.0 V
R1518J851E	L4J851E_	8.5 V
R1518J901E	L4J901E_	9.0 V

R1518Jxx1F

Product Name	02345678	V _{SET}
R1518J251F	L5J251F_	2.5 V
R1518J331F	L5J331F_	3.3 V
R1518J341F	L5J341F_	3.4 V
R1518J501F	L5J501F_	5.0 V
R1518J601F	L5J601F_	6.0 V
R1518J851F	L5J851F_	8.5 V
R1518J901F	L5J901F_	9.0 V

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
- 3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
- 4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.
 - Aerospace Equipment
 - Equipment Used in the Deep Sea
 - Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
 - Life Maintenance Medical Equipment
 - Fire Alarms / Intruder Detectors
 - Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
 - Various Safety Devices
 - Traffic control system
 - Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
- 8. Quality Warranty
 - 8-1. Quality Warranty Period

In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.

8-2. Quality Warranty Remedies

When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.

- Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
- 8-3. Remedies after Quality Warranty Period

With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.

- 9. Anti-radiation design is not implemented in the products described in this document.
- 10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Nisshinbo Micro Devices Inc.

Official website https://www.nisshinbo-microdevices.co.jp/en/ Purchase information https://www.nisshinbo-microdevices.co.jp/en/buy/