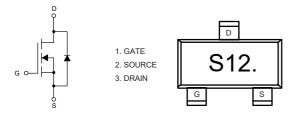


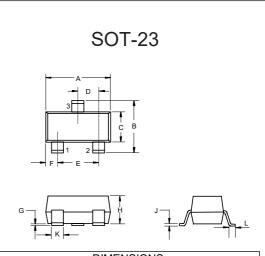
Features

- AEC-Q101 Qualified
- Trench LV MOSFET Technology
- · High Power and Current Handing Capability
- · Moisture Sensitivity Level 1
- Halogen Free. "Green" Device (Note 1)
- Epoxy Meets UL 94 V-0 Flammability Rating
- Lead Free Finish/RoHS Compliant ("P" Suffix Designates RoHS Compliant. See Ordering Information)

Maximum Ratings

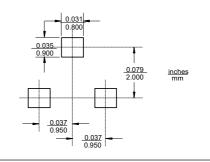

- Operating Junction Temperature Range : -55°C to +150°C
- Storage Temperature Range: -55°C to +150°C
- Thermal Resistance: 100°C/W Junction to Ambient^(Note 2)

Parameter		Symbol	Rating	Unit	
Drain-Source Voltage		V _{DS}	20	V	
Gate-Source Volltage		V _{GS}	±8	V	
Continuous Drain Current	T _A =25°C	- I _D	5	А	
	T _A =70°C		4		
Pulsed Drain Current ^(Note 3)		I _{DM}	20	Α	
Total Power Dissipation (Note 4)		P _D	1.25	W	


Note:

- 1. Halogen free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 2. The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C.
- 3. Repetitive rating; pulse width limited by max. junction temperature.
- 4. P_D is based on max. junction temperature, using junction ambient thermal resistance.

Internal Structure and Marking Code



N-Channel MOSFET

	DIMENSIONS					
DIM	INC	HES	MM		NOTE	
DIIVI	MIN	MAX	MIN	MAX	NOIL	
Α	0.110	0.120	2.80	3.04		
В	0.083	0.104	2.10	2.64		
С	0.047	0.055	1.20	1.40		
D	0.034	0.041	0.85	1.05		
E	0.067	0.083	1.70	2.10		
F	0.018	0.024	0.45	0.60		
G	0.0004	0.006	0.01	0.15		
Н	0.035	0.043	0.90	1.10		
J	0.003	0.007	0.08	0.18		
K	0.012	0.020	0.30	0.51		
L	0.007	0.020	0.20	0.50		

Suggested Solder Pad Layout

Electrical Characteristics @ 25°C (Unless Otherwise Specified)

Parameter	Symbol	Test conditions	Min	Тур	Max	Unit	
Static Characteristics							
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =250μA	20			V	
Gate-Threshold Voltage	$V_{GS(th)}$	V _{DS} =V _{GS} , I _D =250μA	0.45	0.7	1.0	V	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±8V, V _{DS} =0V			±100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =20V, V _{GS} =0V			1	μA	
Drain-Source On-Resistance		V _{GS} =4.5V, I _D =5A		14	31.8	mΩ	
	R _{DS(on)}	V _{GS} =2.5V, I _D =4.7A		18	35.6		
		V _{GS} =1.8V, I _D =4.3A		24	41.4		
Forward Transconductance	9 _{FS}	V _{DS} =10V, I _D =4A		30		S	
Gate Resistance	R _g	f=1 MHz, Open drain		3		Ω	
Diode Characteristics	-		'		ı		
Continuous Body Diode Current	Is				5	А	
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =4A			1.2	V	
Reverse Recovery Time	t _{rr}	1 = 2 4 A dl /dt=200 A /u.o		10		ns	
Reverse Recovery Charge	Q _{rr}	I _F =3.4A, dI _F /dt=200A/μs		6		nC	
Dynamic Characteristics	-		'				
Input Capacitance	C _{iss}			668			
Output Capacitance	C _{oss}	V _{DS} =10V,V _{GS} =0V,f=1MHz		114		pF	
Reverse Transfer Capacitance	C _{rss}			102			
Total Gate Charge	Q _g			11			
Gate-Source Charge	Q _{gs}	V _{DS} =10V,V _{GS} =4.5V,I _D =3A		1.8		nC	
Gate-Drain Charge	Q_{gd}			3			
Turn-On Delay Time	t _{d(on)}			6.4			
Turn-On Rise Time	t _r	V _{DD} =10V,V _{GS} =10V,		12.6			
Turn-Off Delay Time	t _{d(off)}	$R_G=2.2\Omega$, $I_D=1A$		21		- ns -	
Turn-Off Fall Time	t _f			2.6			

Curve Characteristics

Fig.1 - Typical Output Characteristics

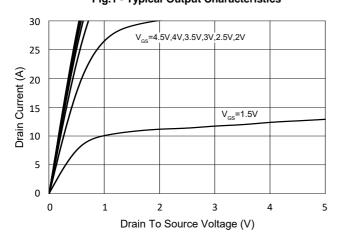


Fig.2 - Transfer Characteristic

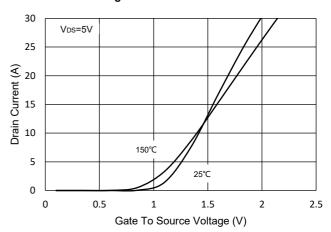
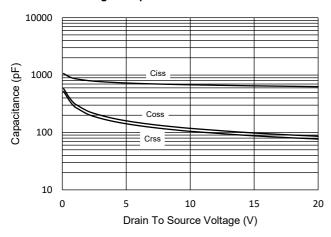
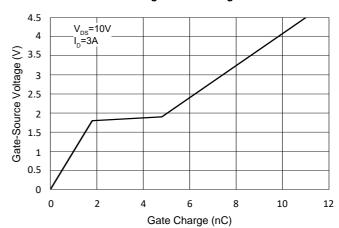
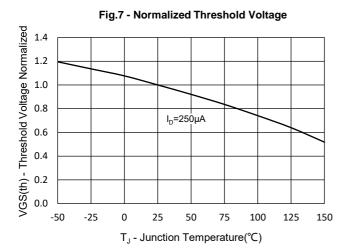
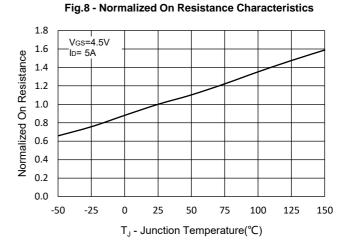


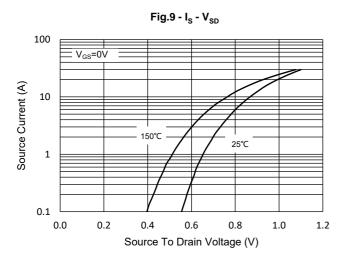
Fig.3 - R_{DS(ON)} - V_{GS} 100 Drain-Source On-Resistance (mΩ) İ_D=5A 80 60 40 20 25°C 0 1.5 2 2.5 3 3.5 4 4.5 Gate To Source Voltage (V)

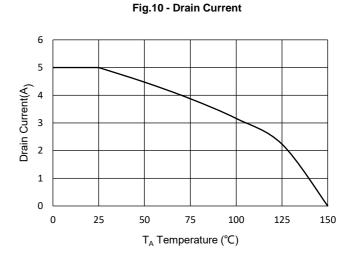
Fig.4 - R_{DS(ON)} - I_D 25 Drain-Source On-Resistance (mΩ) V_{GS}=2.5V V_{GS}=4.5V 15 5 0 0 5 10 15 20 25 30 Drain Current (A)

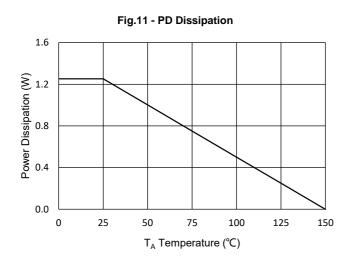
Fig.5 - Capacitance Characteristics

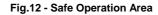





Fig.6 - Gate Charge






Curve Characteristics



Curve Characteristics

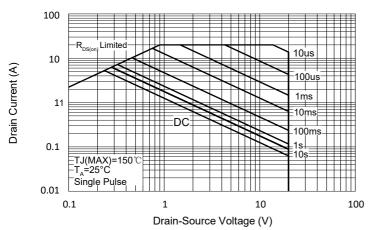
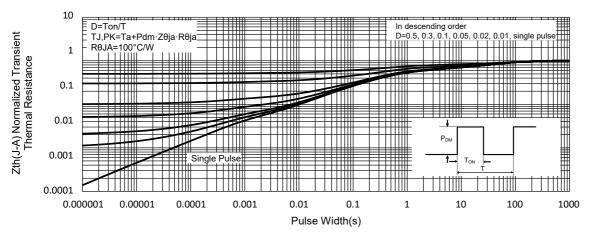



Fig.13 - Normalized Transient Thermal Impedance

Ordering Information

Device	Packing	
Part Number-TP	Tape&Reel:3Kpcs/Reel	

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp**. does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp**, and all the companies whose products are represented on our website, harmless against all damages. **Micro Commercial Components Corp**, products are sold subject to the general terms and conditions of commercial sale, as published at

https://www.mccsemi.com/Home/TermsAndConditions.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.