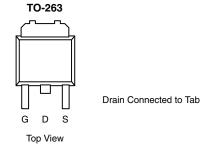
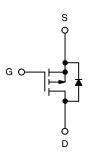


P-Channel 80 V (D-S) MOSFET


PRODU	CT SUMMARY		
V _{DS} (V)	$R_{DS(on)}\left(\Omega\right)$	I _D (A) ^b	Q _g (Typ)
- 80	0.0112 at V _{GS} = - 10 V	- 110	85 nC
- 60	0.0145 at V _{GS} = - 4.5 V	- 109	00 110

FEATURES


TrenchFET[®] Power MOSFET

Material categorization:
 For definitions of compliance please see www.vishav.com/doc?99912

Ordering Information: SUM110P08-11L-E3 (Lead (Pb)-free)

P-Channel MOSFET

Parameter		Symbol	Limit	Unit
Drain-Source Voltage		V _{DS}	- 80	V
Gate-Source Voltage		V _{GS}	± 20	
	T _C = 25 °C		- 110 ^a	
Continuous Proin Current (T. 175 °C)	T _C = 125 °C		- 71	A
Continuous Drain Current (T _J = 175 °C)	T _A = 25 °C	I _D	- 23.5 ^{b, c}	
	T _A = 125 °C		- 13.6 ^{b, c}	
Pulsed Drain Current		I _{DM}	- 120	
Continuous Course Busin Binds Course	T _C = 25 °C		- 110	
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	- 9 ^{b, c}	
Avalanche Current		I _{AS}	- 75	
Single-Pulse Avalanche Energy	L = 0.1 mH	E _{AS}	281	mJ
	T _C = 25 °C		375	
Maximum Power Dissipation	T _C = 125 °C	ь Г	125	w
	T _A = 25 °C	P _D	13.6 ^{b, c}	
	T _A = 125 °C		4.5 ^{b, c}	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 175	°C

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambient ^{b, d}	t ≤ 10 s	R_{thJA}	8	11	°C/W
Maximum Junction-to-Case (Drain)	Steady State	R _{thJC}	0.33	0.4	C/VV

Notes:

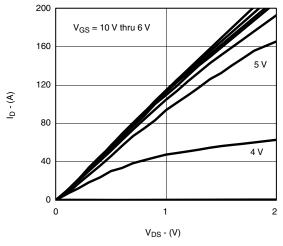
- a. Package limited.
- b. Surface mounted on 1" x 1" FR4 board.
- c. t = 10 s.
- d. Maximum under steady state conditions is 40 $^{\circ}\text{C/W}.$

Document Number: 73471 S12-3071-Rev. C, 24-Dec-12 For technical questions, contact: pmostechsupport@vishay.com

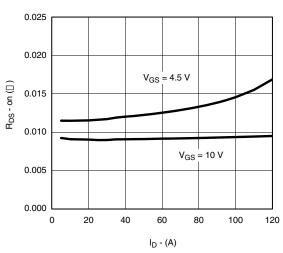
SUM110P08-11L

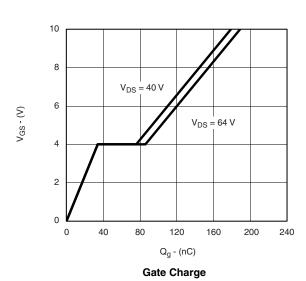
Vishay Siliconix

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Static					•	
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	- 80			V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = - 1 μA		- 85		\//0C
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	η Ι _D = - 1 μΑ		- 5.5		mV/°C
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	- 1		- 3	V
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA
Zana Oaka Valla va Busin Oamani		V _{DS} = - 80 V, V _{GS} = 0 V			- 1	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = - 80 V, V _{GS} = 0 V, T _J = 175 °C			- 500	μΑ
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 10 \text{ V}, V_{GS} = -10 \text{ V}$	- 120			Α
	_	V _{GS} = - 10 V, I _D = - 20 A		0.0093	0.0112	
Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = - 4.5 V, I _D = - 15 A		0.0120	0.0145	Ω
Forward Transconductance ^a	g _{fs}	V _{DS} = - 15 V, I _D = - 20 A		85		S
Dynamic ^b	•			•	•	
Input Capacitance	C _{iss}			10850		
Output Capacitance	C _{oss}	V _{DS} = - 40 V, V _{GS} = 0 V, f = 1 MHz		800		pF
Reverse Transfer Capacitance	C_{rss}			700		
Total Cata Charge	0	V _{DS} = - 40 V, V _{GS} = - 10 V, I _D = - 110 A		180	270	
Total Gate Charge	Q _g			85	130	
Gate-Source Charge	Q_{gs}	$V_{DS} = -40 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -110 \text{ A}$		35		nC
Gate-Drain Charge	Q_{gd}			42		
Gate Resistance	R_g	f = 1 MHz		3.6		Ω
Turn-On Delay Time	t _{d(on)}			20	30	
Rise Time	t _r	V_{DD} = - 40 V, R_L = 0.36 Ω		330	500	no
Turn-Off Delay Time	t _{d(off)}	$I_D \cong -110 \text{ A}, V_{GEN} = -10 \text{ V}, R_g = 1 \Omega$		135	205	ns
Fall Time	t _f			550	825	
Drain-Source Body Diode Characteristic	s					
Continuous Source-Drain Diode Current	I _S	T _C = 25 °C			- 110	Α
Pulse Diode Forward Current ^a	I _{SM}				- 120	
Body Diode Voltage	V_{SD}	I _S = - 20 A		- 0.8	- 1.5	V
Body Diode Reverse Recovery Time	t _{rr}			65	100	ns
Body Diode Reverse Recovery Charge	Q _{rr}	I _F = - 20 A, di/dt = 100 A/μs, T _{.I} = 25 °C		135	205	nC
Reverse Recovery Fall Time	t _a	$\frac{1}{1} = \frac{1}{2} = \frac{1}$		43		no
Reverse Recovery Rise Time	t _b			22		ns

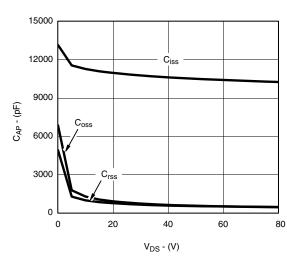

Notes:

- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.
- b. Guaranteed by design, not subject to production testing.

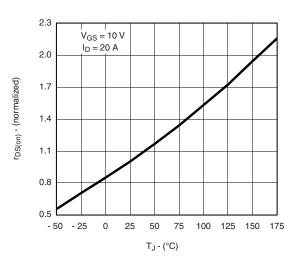

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Output Characteristics

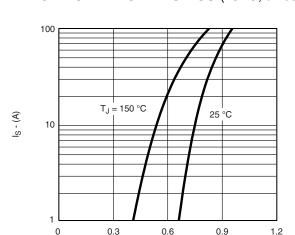


On-Resistance vs. Drain Current

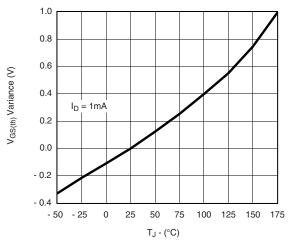


40 30 20 25 °C 10 T_C = 125 °C 55 °C 0 2 3 0 1 V_{GS} - (V)

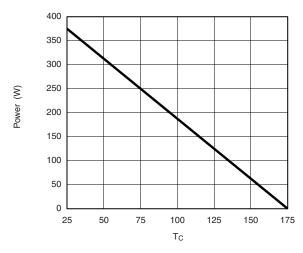
Transfer Characteristics

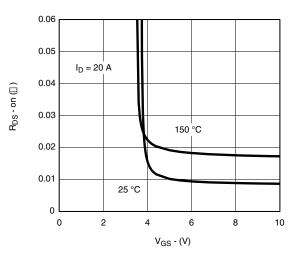


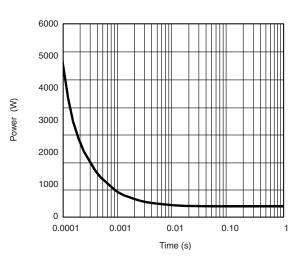
Capacitance

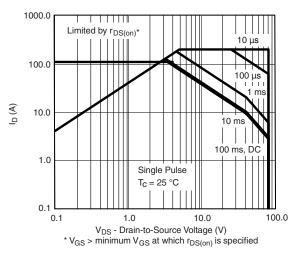


On-Resistance vs. Junction Temperature

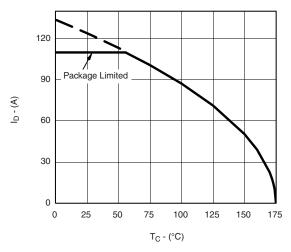

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

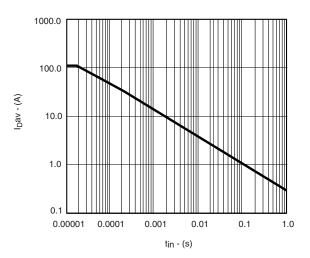

V_{SD} - (V) Source-Drain Diode Forward Voltage


Threshold Voltage

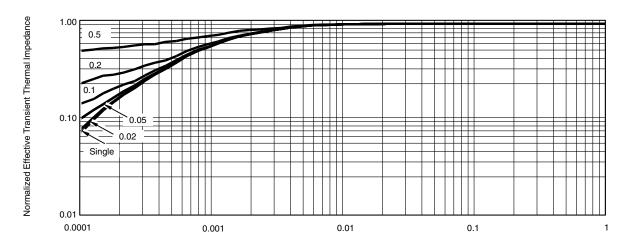

Power Derating, Junction-to-Case

On-Resistance vs. Gate-to-Source Voltage


Single Pulse Power, Junction-to-Case (T_C = 25 °C)

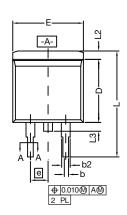


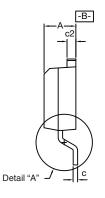
Safe Operating Area

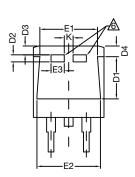

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Max. Avalanche and Drain Current vs. Case Temperature

Avalanche Current vs. Time

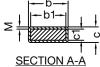

Normalized Thermal Transient Impedance, Junction-to-Case


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?73471.



TO-263 (D²PAK): 3-LEAD

VERSION 1: FACILITY CODE = T



DETAIL A (ROTATED 90°)

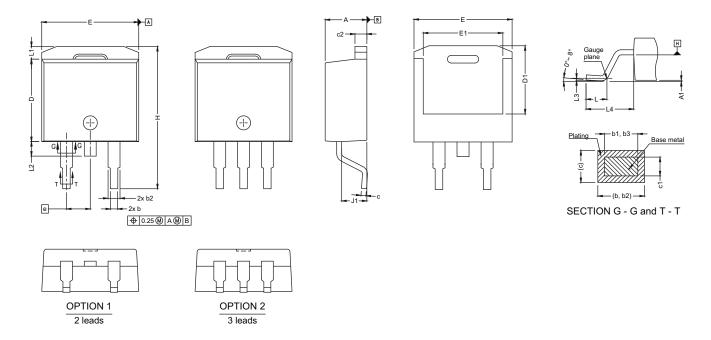
≥ <u>↓</u>			ţ
< T		10	ပ
SF	CTION	1	1

Notes

- 1. Plane B includes maximum features of heat sink tab and plastic.
- 2. No more than 25 % of L1 can fall above seating plane by max. 8 mils.
- 3. Pin-to-pin coplanarity max. 4 mils.
- 4. *: Thin lead is for SUB, SYB. Thick lead is for SUM, SYM, SQM.
- 5. Use inches as the primary measurement.

6. This feature is for thick lead.

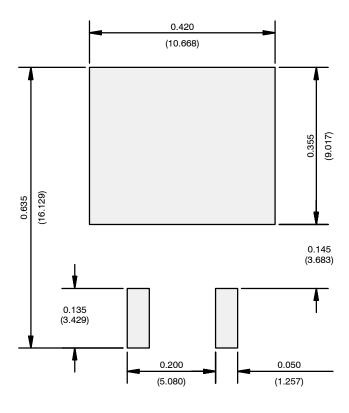
			HES	MILLIMETERS		
	DIM.	MIN.	MAX.	MIN.	MAX.	
Α		0.160	0.190	4.064	4.826	
	b	0.020	0.039	0.508	0.990	
	b1	0.020	0.035	0.508	0.889	
	b2	0.045	0.055	1.143	1.397	
c*	Thin lead	0.013	0.018	0.330	0.457	
١	Thick lead	0.023	0.028	0.584	0.711	
c1	Thin lead	0.013	0.017	0.330	0.431	
Ü	Thick lead	0.023	0.027	0.584	0.685	
	c2	0.045	0.055	1.143	1.397	
	D	0.340	0.380	8.636	9.652	
	D1	0.220	0.240	5.588	6.096	
	D2	0.038	0.042	0.965	1.067	
	D3	0.045	0.055	1.143	1.397	
	D4	0.044	0.052	1.118	1.321	
	Е	0.380	0.410	9.652	10.414	
	E1	0.245	-	6.223	-	
	E2	0.355	0.375	9.017	9.525	
E3		0.072	0.078	1.829	1.981	
	e 0.10		BSC	2.54 BSC		
K		0.045	0.055	1.143	1.397	
L		0.575	0.625	14.605	15.875	
	L1 0.090 0.110 2		2.286	2.794		
L2		0.040	0.055	1.016	1.397	
L3		0.050	0.070	1.270	1.778	
	L4	0.010	BSC	0.254	BSC	
	М	-	0.002	-	0.050	


Revison: 28-Oct-2024 Document Number: 71198

www.vishay.com

Vishay Siliconix

VERSION 2: FACILITY CODE = N


DIM.	MIN.	MAX.
A	4.36	4.56
A1	0	0.25
b	0.70	0.90
b1	0.51	0.89
b2	1.20	1.46
b3	1.17	1.37
С	0.38	0.694
c1	0.38	0.534
c2	1.19	1.34
D	8.60	9.00
D1	6.9	7.5
E	10.15	10.55
E1	8.1	8.7
е	2.54	BSC
Н	15.0	15.6
L	1.9	2.5
L1	-	1.65
L2	-	1.78
L3	0.25 typ.	
L4	4.78	5.28
J1	2.56	2.96

DWG: 5843

RECOMMENDED MINIMUM PADS FOR D²PAK: 3-Lead

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.