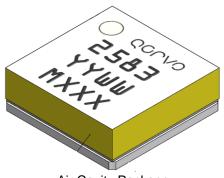


TGA2583-SM

2.7 to 3.7 GHz, 10 W GaN Power Amplifier

Product Overview


Qorvo's TGA2583-SM is a packaged MMIC power amplifier which operates from 2.7 to 3.7 GHz. The TGA2583-SM is designed using Qorvo's production 0.25 μ m GaN on SiC process (QGaN25).

The TGA2583-SM typically provides 41.4 dBm of saturated output power, > 50% power-added efficiency, and 33 dB small signal gain. It can operate under both pulse and CW conditions.

The TGA2583-SM is available in a low-cost, surface mount 32 lead 5 x 5 AIN QFN. It is ideally suited to support both commercial and defense related radar applications.

Both RF ports have integrated DC blocking capacitors and are fully matched to 50 ohms.

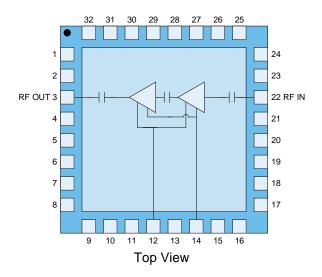
Lead-free and RoHS compliant

Air Cavity Package

Key Features

• Frequency Range: 2.7-3.7 GHz

Psat: 41.4 dBmPAE: 50 %


Small Signal Gain: 33 dBReturn Loss: 12 dB

• Bias: $V_D = 25-32 \text{ V}$ (CW or Pulsed), $I_{DQ} = 175 \text{ mA}$

• Pulsed V_D : PW = 100 us, DC = 10 %

• Package Dimensions: 5.0 x 5.0 x 1.625 mm

Functional Block Diagram

Applications

· Commercial and Military Radar

Ordering Information

Part No.	Description
TGA2583-SM	2.7–3.7 GHz, 10 W GaN Power
TGA2583-SM EVB	Evaluation Board

2.7 to 3.7 GHz, 10 W GaN Power Amplifier

Absolute Maximum Ratings

Parameter	Value / Range
Drain Voltage (V _D)	40 V
Gate Voltage Range (V _G)	-8 to 0 V
Drain Current (I _D)	1530 mA
Gate Current (I _G)	−5.4 to 11.5 mA
Power Dissipation (P _{DISS}), 85 °C	27 W
Input Power (P _{IN}), CW, 50 Ω, 85 °C	30 dBm
Input Power (P _{IN}), CW, V _{SWR} 10:1, V _D = 28 V, 85 °C	23 dBm
Mounting Temperature (30 Seconds)	260 °C
Storage Temperature	−55 to 150 °C

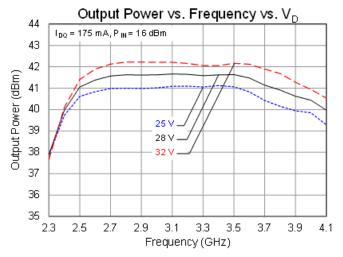
Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the device at these conditions is not implied.

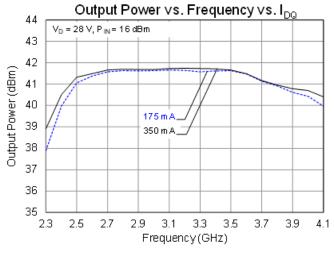
Recommended Operating Conditions

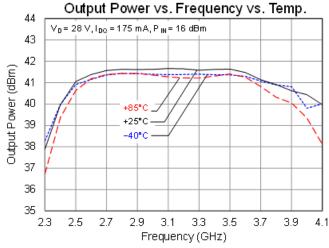
Parameter	Value / Range
Drain Voltage (V _D)	25–32 V
Drain Current (I _{DQ})	175–350 mA
Drain Current Under RF Drive (ID_DRIVE)	See plots pg. 6
Gate Voltage Range (V _G)	−2.8 to −2.0 V
Gate Current Under RF Drive (I _{G_DRIVE})	See plots p. 7

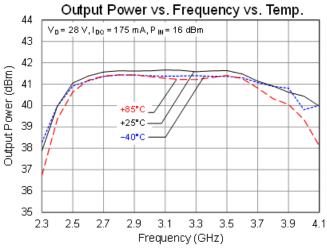
Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

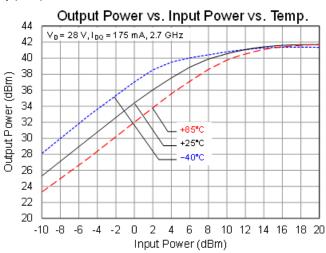
Electrical Specifications

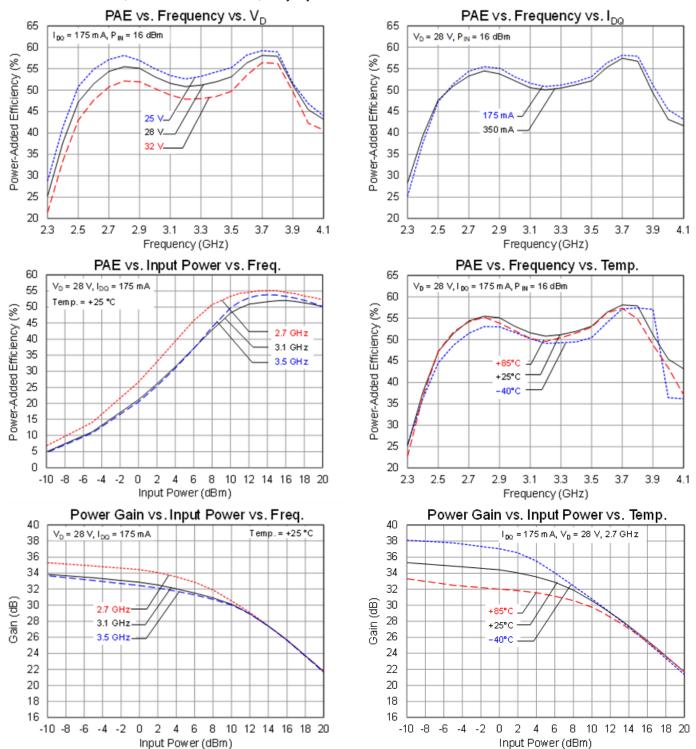

Test conditions unless otherwise noted: 25 °C, V_D = 28 V, I_{DQ} = 175 mA, Pulsed V_D: PW = 100 us, DC = 10 %


Parameter	Min	Тур	Max	Units
Operational Frequency Range	2.7		3.7	GHz
Small Signal Gain (CW)		33		dB
Input Return Loss (CW)		16		dB
Output Return Loss (CW)		11		dB
Output Power at Saturation (P _{IN} = 16 dBm)	40.5	41.6		dBm
Power-Added Efficiency (P _{IN} = 16 dBm)	50	54		%
Gate Leakage (V _D = 10 V, V _G = −3.7 V)	-5.98		-0.0001	mA
Gain Temperature Coefficient		-0.05		dB/°C
Power Temperature Coefficient		-0.005		dBm/°C

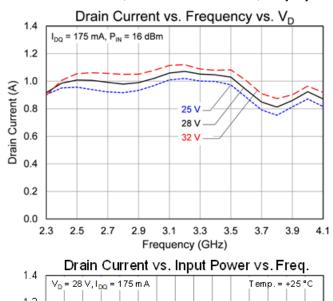


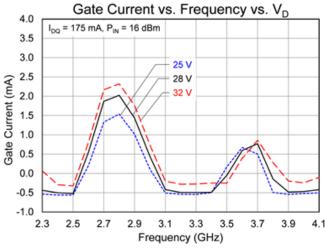

Performance Plots - Large Signal (Pulsed)

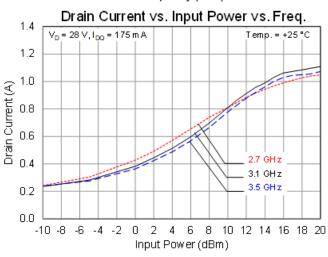

Condition: Pulsed V_D, Pulse Width = 100 us, Duty Cycle = 10%

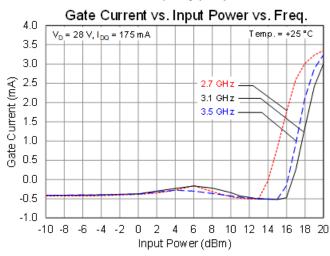


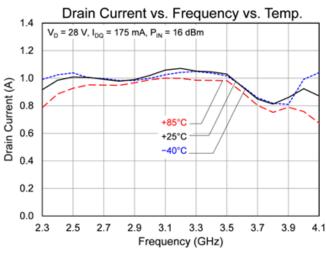
Performance Plots - Large Signal (Pulsed)

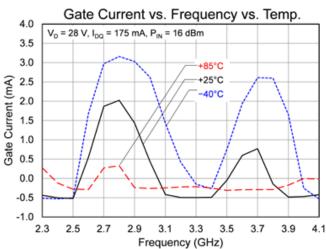

Condition: Pulsed V_D, Pulse Width = 100 us, Duty Cycle = 10%

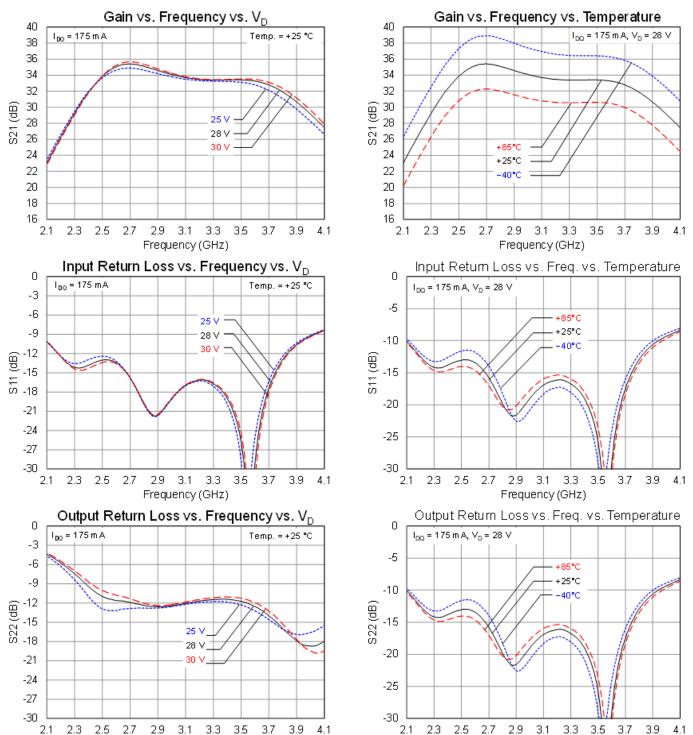





Performance Plots - Large Signal (Pulsed)


Condition: Pulsed V_D, Pulse Width = 100 us, Duty Cycle = 10%

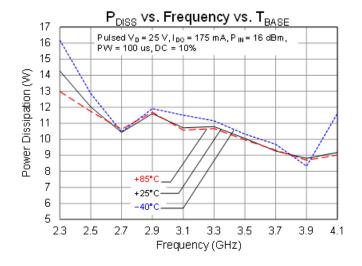


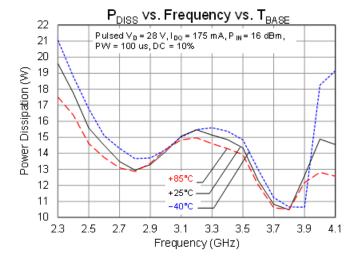


Performance Plots – Small Signal

Frequency (GHz)

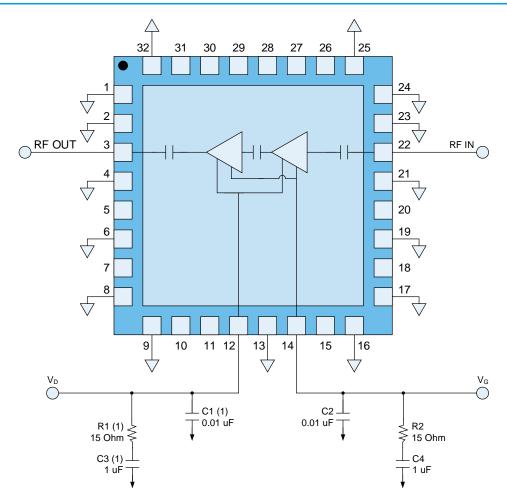
Frequency (GHz)


Thermal and Reliability Information


Parameter	Test Conditions	Value	Units
Thermal Resistance $(\theta_{JC})^{(1)}$	$T_{BASE} = 85^{\circ}C$, $V_{D} = 28 \text{ V}$, $PW = 100 \text{ us}$, $DC = 10 \text{ %}$, $-$ Freq = 3.2 GHz, $P_{IN} = 16 \text{ dBm}$, $I_{DQ} = 175 \text{ mA}$,	2.592	°C/W
Channel Temperature (T _{CH}) (Under RF drive) ⁽²⁾	I _{D_Drive} = 999 mA, P _{OUT} = 41.2 dBm, P _{DISS} = 15.0 W	124.2	°C

Notes:

- 1. Thermal resistance determined to the back of the package (fixed at 85 °C)
- 2. IR scan equivalent. Refer to the following document: <u>GaN Device Channel Temperature, Thermal Resistance, and Reliability</u> Estimates

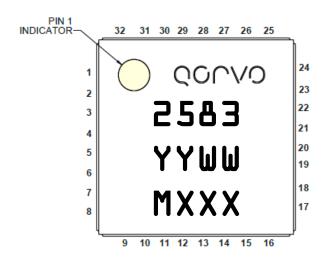

Dissipated Power

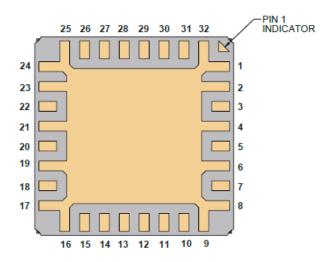
Applications Information

Notes:

1. Remove if pulsing on drain

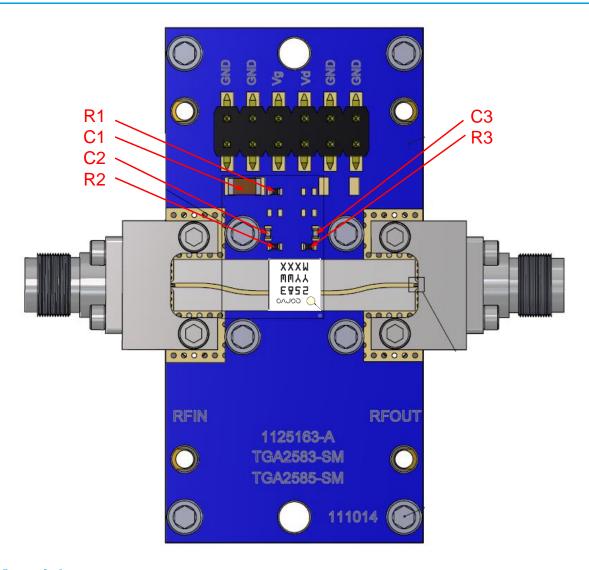
Bias-Up Procedure


Set I _D limit to 1.53 A, I _G limit to 8 mA	
Apply −5 V to V _G	
Apply + 25 V to V _D ; ensure I _{DQ} is approx. 0 mA	
Adjust V _G until I _{DQ} = 175 mA	
Turn on RF supply	


Bias-Down Procedure

Turn off RF signal	
Reduce V _G to −5 V; ensure I _{DQ} is approx. 0 mA	
Set V _D to 0 V	
Turn off V _D supply	
Turn off V _G supply	

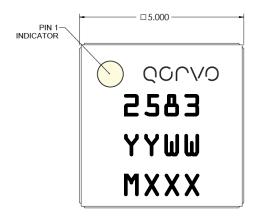
Pin Layout

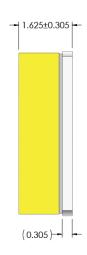


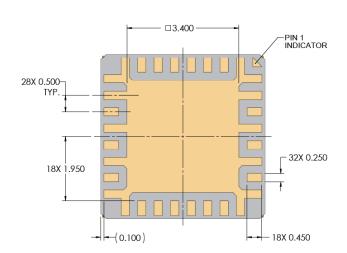
Bond Pad Description

Pad No.	Symbol	Description
1, 2, 4, 6, 8-9, 13, 16–17, 19, 21, 23–25, 32	GND	Connected to ground paddle (pin 33); must be grounded on PCB
3	RF OUT	Output; matched to 50 Ω; DC blocked
5, 7, 10, 11, 15, 18, 20, 26–31	NC	No connection; grounding of PCB pads recommended but not required.
12	DRAIN	Drain voltage; bias network is required; see recommended Application Information on page 8
14	GATE	Gate voltage; bias network is required; see recommended Application Information on page 8
22	RF IN	Input; matched to 50 Ω; DC blocked
33	GND	Ground Paddle. Multiple vias should be employed to minimize inductance and thermal resistance.

Evaluation Board




Bill of Materials


Reference Des.	Value	Description	Manuf.	Part Number
C1	10 µF	CAP, 10uF, 20%, 50V, 20%, X5R, 1206	Various	
C2, C3	0.01 µF	CAP, 0.01uF, 10%, 50V, X7R, 0402	Various	
R1, R2	10 Ohm	RES, 10 OHM, 5%, 0.1W, 0402	Various	
J1, J2	2.92 mm	Female End Launch Connector	Southwest Microwave	1092-01A-5

Mechanical Information

Units: millimeters

Tolerances: unless otherwise specified

 $x.xx = \pm 0.25$

 $x.xxx = \pm 0.127$ Materials:

Base: Ceramic

Lid: Laminate

All metalized features are gold plated

Part is epoxy sealed

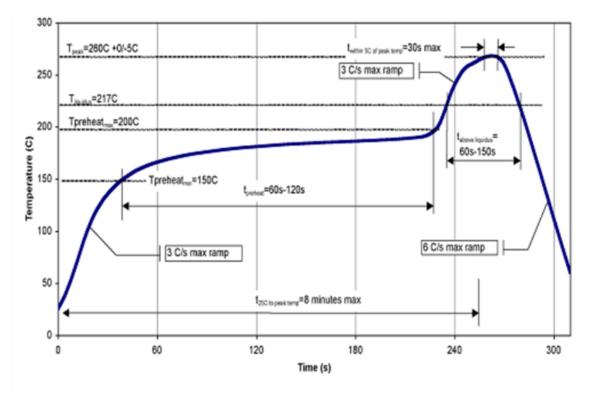
Marking:

2583: Part number

YY: Part Assembly year

WW: Part Assembly week

MXXX: Batch ID


Assembly Notes

Compatible with lead-free soldering processes with 260°C peak reflow temperature.

This package is air-cavity and non-hermetic, and therefore cannot be subjected to aqueous washing. The use of no-clean solder to avoid washing after soldering is highly recommended.

Contact plating: Ni-Au.

Solder rework not recommended.

Recommended Soldering Temperature Profile

Handling Precautions

Parameter	Rating	Standard
ESD – Human Body Model (HBM)	1B	JEDEC/JESD22-A114
ESD – Charge Device Model (CDM)	C3	JEDEC/JESD22-C101
MSL – Moisture Sensitivity Level	MSL3	JEDEC/IPC/JEDEC J-STD-020

Caution! ESD-Sensitive Device

Solderability

Compatible with the latest version of J-STD-020 Lead-free solder, 260 °C.

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- · Lead Free
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>
Tel: 1-844-890-8163

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

© 2023 Qorvo US, Inc. All rights reserved. This document is subject to copyright laws in various jurisdictions worldwide and may not be reproduced or distributed, in whole or in part, without the express written consent of Qorvo US, Inc.