

TPAN0263 50W TO-263 Non-Inductive High-Power Resistor

Resistance	0.5Ω~10ΚΩ
Tolerance	±0.5%
TCR	±100ppm/°C
Rated Power	50W

Applications

Instrumentation Industrial Power Equipment Automotive Electronics Motor Control & Drive Circuits

Better Solution for Sustainable High End Manufacturing

High Power with Excellent Reliability & Stability

Introduction

TPAN0263 is a TO-263 non-inductive high-power resistor. The TO-263 transistor outline package is an SMT package, commonly used for high-power transistors, small to medium-sized integrated circuits, power resistors, etc.

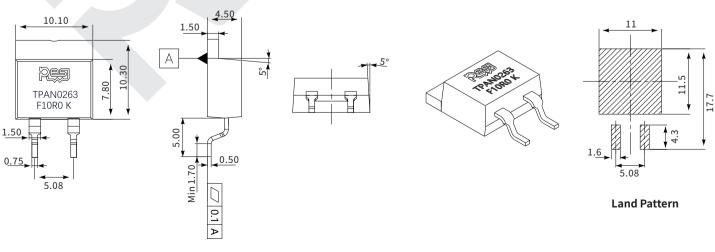
The rated power of TPAN0263 series is 50W. TPAN0263 adopts a flange for its better heat dissipation to balance the thermal characteristics of the circuit. It is usually designed for current measurement, energy absorption, discharge, RC absorption, high-speed switching, high frequency transmission circuits, voltage regulation, constant power loads, and low-energy pulse loads. Its industry applications include industrial lasers, welding equipment, testing equipment, instrumentation, UPS, automobiles, switching power supplies, etc.

TPAN0263 series high-power molded resistor has excellent long-term stability, low TCR, high heat dissipation, low thermal resistance and low current noise, applying for a wide range. From raw materials, core production equipment, to process technology, TPAN0263 production is independent and controllable and achieves stable quality and timely delivery.

Unit: mm

Electrical Parameters

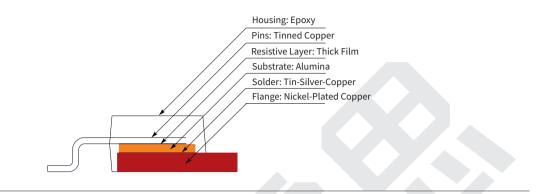
Series	Resistance Ω	TCR ppm/°C(+20°C Ref)	Tolerance %	Max. Operating Voltage ¹	Rated Power ² With Heat Sink. Flange≤25°C	Without Heat Sink	Operating Temperature
TPAN0263	0.5≤R≤10K	±100 (-55°C~125°C)	$\pm 0.5, \pm 1, \pm 5$	500V	50W	2.25W	-55~+150°C
Galvanic Isolation	Insulation Resistance	Thermal Resistance	Inductance ³	E-Series Value	Technology	Housing	Unit Weight
2000VAC	≥10 ⁴ MΩ	2.5°C/W	≼0.1µН	E24	Thick Film	Epoxy Molded	1.65±0.5g


1. According to P=UI, combined with power and the maximum operating voltage, calculate the maximum current value (P and U whichever is less).

2. If the actual operating power is greater than 2.25W, it must be used with a heat sink. The recommended heat sink and installation method refer to pages 6 and 7.

3. When resistance is between $0.5\Omega \sim 1K\Omega$, the applicable testing frequency range is 1kHz ~1MHz. When the resistance value is between $1K\Omega \sim 10K\Omega$, the applicable testing

frequency range is 1kHz ~ 100kHz. If higher application frequency is required, it needs to be verified through actual operating conditions testing or contact us.


Dimensions

Note: The above dimensional tolerance is \pm 0.3 mm.

Construction

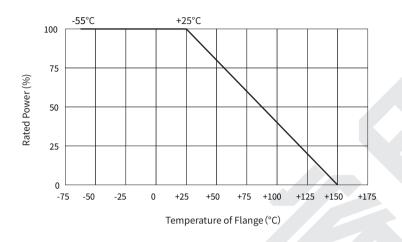
Marking

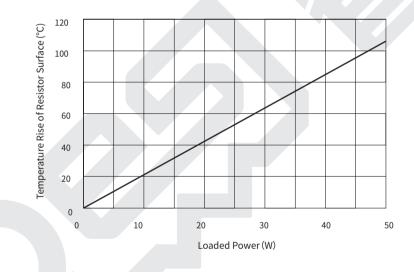
The first line (four digits) represents brand.

The second line (eight digits) represents product series and package. The third line (six digits) represents tolerance, resistance and TCR.

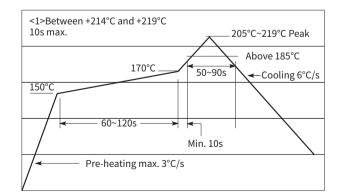
Series	Illustration	E-Series Value	Demonstration
TPAN0263		E24	RESI: Brand TPAN0263: Series & Package F: Tolerance 10R0: Resistance K: TCR

Part Number Information

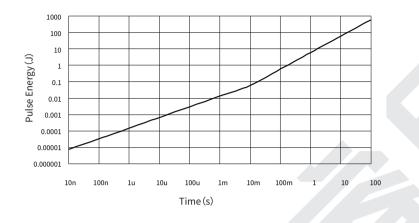

Example: TPAN0263F10R0K9 (TPAN 0263 $\pm1\%$ 100 $\pm100 ppm/^{\circ}C$ Standard)


For higher/lower resistance, tighter tolerance, higher power, lower TCR and larger size, please contact us

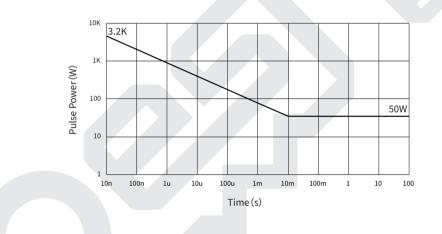
Derating Curve



Power - Temperature Rise Curve


Reflow Soldering Profile

Resistor Surface Temperature: Pre-Heat: +150°C~+170°C, 60~120sec. Reflow: Above+185°C, 50~90sec. Applicable Solder Composition: Sn62%Pb36%Ag2%, or Sn63%Pb37%.

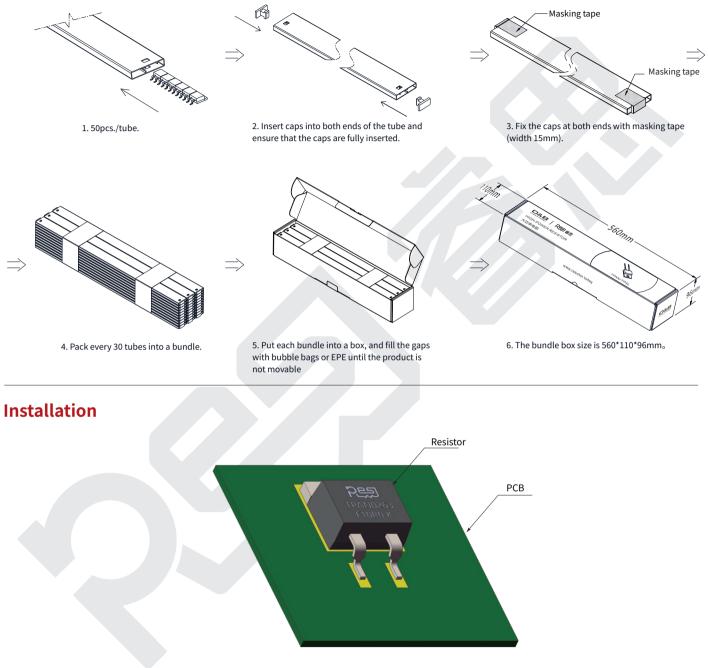


Pulse Energy Curve

Pulse Power Curve

Performance

Test	Test Method	Standards	Test Limits	
High Temperature Storage	1000h@+150°C, unpowered	AEC-Q200 TEST 3 MIL-STD-202 Method 108	_R≤±1%	
Bias Humidity	+85°C, 85%RH, powered 10% rated power for 1000h. Inspect within 24 \pm 4 hours after the test	AEC-Q200 TEST 7 MIL-STD-202 Method 103	∆R±≤0.5%	
Load Life	+25°C¹, 1000h, rated power, not exceeding maximum operating voltage, 90 min on, 30 min off	AEC-Q200 TEST 8 MIL-STD-202 Method 108	△ R≤±1%	
Resistance to Solvent	Immerse in solvent for 1 min and wipe 10 times. Three cycles of three solvents.	AEC-Q200 TEST 12 MIL-STD-202 Method 215	Clear marking. No visible damage	
Mechanical Shock	Half Sine Wave, peak acceleration 100g's, pulse duration 6ms, 3 times in each of six directions, on three different axes	AEC-Q200 TEST 13 MIL-STD-202 Method 213	∆R≤±0.25%	
Vibration	10-2KHz, 5g's, 20min/cycle, 12 cycles in each directions of X Y Z	AEC-Q200 TEST 14 MIL-STD-202 Method 204	△ R≤±0.25%	
Resistance to Solder Heat	+260°C tin bath for 10s AEC-Q200 T MIL-STD-20		∆R≤±0.25%	
Thermal Shock	-55°C, 15min~ambient temperature<20s~+150°C, 15min, 1000 cycles	AEC-Q200 TEST 16 MIL-STD-202 Method 107	∆R≤±0.5%	
Solderability	+245°C tin bath for 3s	AEC-Q200 TEST 18 IEC 60115-1 4.17	No visible damage. 95% minimum coverage	
TCR	-55°C and +125°C, +20°C Ref.	AEC-Q200 TEST 19 IEC 60115-1 4.8	Within the nominal value range	
Flammability	Flame the sample for 10 seconds, twice	UL-94	Meet the level conditions of V1	
Terminal Strength	Apply force 20N for 5~10s	MIL-STD-202G Method 211A	∆R≤±0.2%	
Withstand Voltage	Apply an effective 2000VAC between the terminal and flange for 60 seconds	IEC 60115-1 4.7	No breakdown or flashover, △R≪±0.25%	
Short Time Overload	2x rated power for 5s, not exceeding 1.5x maximum operating voltage	IEC 60115-1 4.13	∆R≤±0.5%	
Low Temperature Operation	-55 °C, unpowered for 1h, powered rated voltage for 45 min, unpowered for 15 min	IEC 60115-1 4.36	∆R≤±0.5%	


1. During testing, water-cooled or air-cooled heat dissipation should be used to ensure that the flange temperature is ≤ 25 °C.

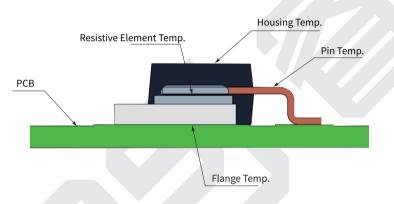
TPAN0263

50W TO-263 Non-Inductive High-Power Resistor

Packaging

1. The general SMD mounting of TO-263 resistors is shown in the figure above. It is recommended to use the vacuum nitrogen reflow soldering process, ensuring the best soldering between the flange of the resistor and the PCB. If not soldered in a vacuum or nitrogen environment, there may be many voids between the flange and PCB, which can affect the thermal conductivity. It is recommended that the void rate after soldering should be \leq 3%.

2. It is recommended that the steel mesh opening area should avoid the position of the plastic casing of the resistor to prevent the generation of solder beads during reflow soldering. At the same time, it is recommended to divide the opening area into several areas and set exhaust ducts in the middle.


3. According to the derating curve, when using resistors at full power, it is necessary to use cooling methods such as water cooling or oil cooling to ensure that the temperature of the flange is \leq 25°C, in order to ensure the product's load life and long-term reliability.

Statement of Rated Power and Temperature

The maximum rated power of TPAN0263 series high-power resistor is 50W, which is based on 25 °C operating ambient temperature of the flange. The temperature measurement point is in the center of the back of the flange, which is below the resistive element. The temperature of the resistor flange is different from the temperature of the housing, pin or ambient temperature. The heat dissipation effect of the resistor can be reflected by the flange temperature. Heat dissipation effect is a crucial factor. When equipment or resistor fails, please investigate the heat dissipation of the resistor first. If the flange is over temperature, it usually indicates that the heat dissipation effect has not achieved the conditions specified in the datasheet, which means the installation of the heat sink or the heat dissipation capacity of the applied heat sink does not meet the requirements. Long-term use can lead to drift of the resistance, thereby reducing the load life of the resistor. When using resistors, it is recommended to apply appropriate thermal design, calculation, and temperature measurement or finite element analysis to verify the feasibility of the design and avoid resistor failure due to poor heat dissipation.

Temperature Diagram of Product Assembly

Heat Sink Selection

Users must choose a suitable heat sink based on the usage conditions of the resistors (e.g. power, ambient temperature, etc.). The maximum operating temperature of TPAN0263 series is 150 °C. TPAN0263 power calculation is as follows:

$$= \frac{\Delta T}{R_{TH (j - c)} + R_{TH (c - h)} + R_{TH (h - a)}}$$

P: The operating power of the resistor;

riangle T: The difference of the maximum operating temperature of the resistor and the ambient temperature;

P

R_{TH(j-c)}: The thermal resistance between the resistive layer and the outer part of the resistor, i.e. the thermal resistance of the resistor;

 $R_{TH(c-h)}$. The thermal resistance between the outer part of the resistor and the upper part of the heat sink, i.e. the thermal resistance at the contact interface; $R_{TH(b-a)}$: The thermal resistance of the heat sink.

Example:

 $R_{_{TH(h\text{-}a)}}$: Determine an operating power of 15W and an ambient temperature of +25 °C for TPAN0263;

Referring to the datasheet, the thermal resistance $R_{_{TH}(j,c)}$ of TPAN0200 series is 2.5 °C/W;

The calculation is as follows:

∆T=150°C-25°C=125°C

 $R_{_{TH(j-c)}*}R_{_{TH(c-h)}*}R_{_{TH(h-a)}}= \triangle T/P=8.33^{\circ}C/W$

 $R_{TH (c-h)*} R_{TH (h-a)} = 8.33 - 2.5 = 5.83 \text{°C/W}$

The thermal resistance at the contact interface, $R_{TH(c-h)}$, can be concluded, based on the operating condition. If $R_{TH(c-h)}$ is 1 °C/W, a heat sink with $R_{TH(h-a)}$ less than 4.83 °C/W is needed.

Popular Part Numbers

Part Number	Package	Tolerance	Resistance	TCR	Power	Max. Operating Voltage
TPAN0263DR500K9	TO-263	±0.5%	0.5Ω	±100ppm/°C	50W	500V
TPAN0263D1R00K9	TO-263	±0.5%	1Ω	±100ppm/°C	50W	500V
TPAN0263D1R50K9	TO-263	±0.5%	1.5Ω	± 100 ppm/°C	50W	500V
TPAN0263D2R00K9	TO-263	±0.5%	2Ω	± 100 ppm/°C	50W	500V
TPAN0263D3R00K9	TO-263	±0.5%	3Ω	±100ppm/°C	50W	500V
TPAN0263D3R30K9	TO-263	±0.5%	3.3Ω	±100ppm/°C	50W	500V
TPAN0263D6R80K9	TO-263	±0.5%	6.8Ω	±100ppm/°C	50W	500V
TPAN0263D7R50K9	TO-263	±0.5%	7.5Ω	±100ppm/°C	50W	500V
TPAN0263D10R0K9	TO-263	±0.5%	10Ω	±100ppm/°C	50W	500V
TPAN0263D15R0K9	TO-263	±0.5%	15Ω	±100ppm/°C	50W	500V
TPAN0263D20R0K9	TO-263	±0.5%	20Ω	±100ppm/°C	50W	500V
TPAN0263D25R0K9	TO-263	±0.5%	25Ω	±100ppm/°C	50W	500V
TPAN0263D33R0K9	TO-263	±0.5%	33Ω	±100ppm/°C	50W	500V
TPAN0263D47R0K9	TO-263	±0.5%	47Ω	±100ppm/°C	50W	500V
TPAN0263D50R0K9	TO-263	±0.5%	50Ω	±100ppm/°C	50W	500V
TPAN0263D100RK9	TO-263	±0.5%	100Ω	±100ppm/°C	50W	500V
TPAN0263D200RK9	TO-263	±0.5%	200Ω	±100ppm/°C	50W	500V
TPAN0263D500RK9	TO-263	±0.5%	500Ω	±100ppm/°C	50W	500V
TPAN0263D1K00K9	TO-263	±0.5%	1ΚΩ	±100ppm/°C	50W	500V
TPAN0263D2K00K9	TO-263	±0.5%	2ΚΩ	±100ppm/°C	50W	500V
TPAN0263D5K00K9	TO-263	±0.5%	5ΚΩ	±100ppm/°C	50W	500V
TPAN0263D10K0K9	TO-263	±0.5%	10ΚΩ	±100ppm/°C	50W	500V
TPAN0263FR500K9	TO-263	±1%	0.5Ω	±100ppm/°C	50W	500V
TPAN0263F1R00K9	TO-263	±1%	10	±100ppm/°C	50W	500V
TPAN0263F1R50K9	TO-263	±1%	1.5Ω	±100ppm/°C	50W	500V
TPAN0263F2R00K9	TO-263	±1%	2Ω	±100ppm/°C	50W	500V
TPAN0263F3R00K9	TO-263	±1%	3Ω	±100ppm/°C	50W	500V
TPAN0263F3R30K9	TO-263	±1%	3.3Ω	±100ppm/°C	50W	500V
TPAN0263F6R80K9	TO-263	±1%	6.8Ω	±100ppm/°C	50W	500V
TPAN0263F7R50K9	TO-263	±1%	7.5Ω	±100ppm/°C	50W	500V
TPAN0263F10R0K9	TO-263	±1%	10Ω	±100ppm/°C	50W	500V
TPAN0263F15R0K9	TO-263	±1%	15Ω	±100ppm/°C	50W	500V
TPAN0263F20R0K9	TO-263	±1%	20Ω	±100ppm/°C	50W	500V
TPAN0263F25R0K9	TO-263	±1%	25Ω	±100ppm/°C	50W	500V
TPAN0263F33R0K9	TO-263	±1%	33Ω	±100ppm/°C		
TPAN0263F47R0K9	TO-263	±1%	47Ω	±100ppm/°C	50W 50W	500V 500V
TPAN0263F50R0K9	TO-263	±1%	50Ω	±100ppm/°C	50W	500V
TPAN0263F100RK9	TO-263	±1%	100Ω	±100ppm/°C	50W	500V
TPAN0263F200RK9	TO-263	±1%	200Ω	±100ppm/°C	50W	500V
	TO-263	±1%		±100ppm/°C		500V
TPAN0263F500RK9			500Ω	±100ppm/°C	50W	
TPAN0263F1K00K9 TPAN0263F2K00K9	TO-263	±1% ±1%	1ΚΩ	±100ppm/°C	50W	500V
	TO-263		2ΚΩ		50W	500V
TPAN0263F5K00K9 TPAN0263F10K0K9	TO-263	±1% ±1%	5ΚΩ 10ΚΩ	±100ppm/°C	50W	500V
	TO-263	±1% ±5%		±100ppm/°C	50W	500V
TPAN0263JR500K9	TO-263		0.5Ω	±100ppm/°C	50W	500V
TPAN0263J1R00K9	TO-263	±5%	1Ω	±100ppm/°C	50W	500V
TPAN0263J1R50K9	TO-263	±5%	1.5Ω	±100ppm/°C	50W	500V
TPAN0263J2R00K9	TO-263	±5%	2Ω	±100ppm/°C	50W	500V
TPAN0263J3R00K9	TO-263	±5%	3Ω	±100ppm/°C	50W	500V
TPAN0263J3R30K9	TO-263	±5%	3.3Ω	±100ppm/°C	50W	500V
TPAN0263J6R80K9	TO-263	±5%	6.8Ω	±100ppm/°C	50W	500V

50W TO-263 Non-Inductive High-Power Resistor

Popular Part Numbers

Part Number	Package	Tolerance	Resistance	TCR	Power	Max. Operating Voltage
TPAN0263J7R50K9	TO-263	±5%	7.5Ω	±100ppm/°C	50W	500V
TPAN0263J10R0K9	TO-263	±5%	10Ω	±100ppm/°C	50W	500V
TPAN0263J15R0K9	TO-263	±5%	15Ω	±100ppm/°C	50W	500V
TPAN0263J20R0K9	TO-263	±5%	20Ω	±100ppm/°C	50W	500V
TPAN0263J25R0K9	TO-263	±5%	25Ω	±100ppm/°C	50W	500V
TPAN0263J33R0K9	TO-263	±5%	33Ω	±100ppm/°C	50W	500V
TPAN0263J47R0K9	TO-263	±5%	47Ω	±100ppm/°C	50W	500V
TPAN0263J50R0K9	TO-263	±5%	50Ω	±100ppm/°C	50W	500V
TPAN0263J100RK9	TO-263	±5%	100Ω	±100ppm/°C	50W	500V
TPAN0263J200RK9	TO-263	±5%	200Ω	±100ppm/°C	50W	500V
TPAN0263J500RK9	TO-263	±5%	500Ω	±100ppm/°C	50W	500V
TPAN0263J1K00K9	TO-263	±5%	1ΚΩ	±100ppm/°C	50W	500V
TPAN0263J2K00K9	TO-263	±5%	2ΚΩ	±100ppm/°C	50W	500V
TPAN0263J5K00K9	TO-263	±5%	5ΚΩ	±100ppm/°C	50W	500V
TPAN0263J10K0K9	TO-263	±5%	10ΚΩ	±100ppm/°C	50W	500V

Revision

Version	Revised Content	Date	Approver
V0	Initial Issue	2024.05.06	LWW

TPAN0263 50W TO-263 Non-Inductive High-Power Resistor

Disclaimer

All products, datasheets and data can be changed without prior notice.

C&B Electronics Shenzhen CO., LTD., its affiliates, distributors, employees, and any other person acting on its behalf (collectively referred to as "C&B Electronics") shall not bear any legal responsibility for any errors, inaccuracies, or incompleteness of information related to the product disclosed under this agreement or other disclosures.

Product datasheet does not constitute an extension or revision of the purchase terms and conditions in C&B Electronics, including but not limited to the warranties under this agreement.

Unless specified in the purchase terms and conditions, C&B Electronics makes no guarantees, representations or warranties.

- To the maximum extent permitted by applicable laws, C&B Electronics hereby makes the following disclaimer:
- (1) All liabilities arising from the use of the product;
- (2) Including but not limited to all liabilities arising from special, indirect or incidental damages;

(3) All implied warranties, including warranties of suitability for special purposes, non infringement possibility, and marketability.

The information provided in the datasheet and parameter tables may vary in different applications, and the performance of the product may change over time. The recommended application instructions for the product are based on C&B Electronics' understanding and experience of typical requirements. Customers are obligated to verify whether the product is suitable for a specific application based on the parameters provided in the datasheet. Before officially installing or using the product, you should ensure that you have obtained the latest version of relevant information, which can be obtained through the website: resistor.today.

The signing of this agreement does not constitute an express, implied or other form of license related to all intellectual property rights of C&B Electronic Products.

Unless explicitly stated, the products listed in this agreement are not applicable to lifesaving or life sustaining products. In the absence of a clear indication, the customer shall bear all risks caused by unauthorized use of the above products and agree to fully compensate C&B Electronics for all losses caused by such sales or use. For written product terms for such special applications, please contact authorized personnel from C&B Electronics to obtain.

The names and markings on the listed products may be trademarks owned by others.