Features Power Supply Voltage: 2.5 V to 5.5 V Low Supply Current: 50 µA per channel · Propagation Delay: 120 ns Internal Hysteresis Ensures Clean Switching Offset Voltage: ±4 mV • Input Bias Current: 30 pA Typical Input Common-Mode Range Extends 100 mV Push-Pull Output ### **Applications** Peak and Zero-crossing Detectors • Threshold Detectors/Discriminators • Sensing at the Ground or Supply Line Logic Level Shifting or Translation Power Supply ### **Description** The devices are low-power, high-speed comparators with internal hysteresis. The common-mode input voltage range extends 100 mV beyond the power rail. The devices have 120-ns propagation delay with only 50-uA quiescent current each comparator, which makes the devices suitable for low-power applications. The internal input hysteresis eliminates output switching due to input noise voltage. The devices have push-pull output to support rail-to-rail output swing. The devices are specified for the temperature range from -40°C to +125°C. ### **Typical Application Circuit** ### **Table of Contents** | Features | 1 | |---|----| | Applications | 1 | | Description | 1 | | Typical Application Circuit | 1 | | Revision History | 3 | | Pin Configuration and Functions | 4 | | Specifications | 6 | | Absolute Maximum Ratings ⁽¹⁾ | 6 | | ESD, Electrostatic Discharge Protection | 6 | | Recommended Operating Conditions | 6 | | Thermal Information | 6 | | Electrical Characteristics | 7 | | Electrical Characteristics (continued) | 9 | | Typical Performance Characteristics | 11 | | Application and Implementation | 12 | | Application Information | 12 | | Typical Application | 13 | | Tape and Reel Information | 14 | | Package Outline Dimensions | 15 | | SOT23-5 | 15 | | SOT353-5 | 16 | | SOP8 | 17 | | MSOP8 | 18 | | Order Information | 19 | | IMPORTANT NOTICE AND DISCLAIMER | 20 | # **Revision History** | Date | Revision | Notes | |------------|----------|---| | 2023-09-05 | Rev.A.0 | Initial version. | | 2023-04-26 | Rev.A.1 | Modified the product status of TPCMP252-SO1R, TPCMP251-SC5R and | | | | TPCMP251U-SC5R to future product in order information. | www.3peak.com 3 / 20 AA20230905A1 ## **Pin Configuration and Functions** Table 1. Pin Functions: TPCMP251, TPCMP251U | Pin No. | | Nome 1/0 | | Description | | | |----------|-----------|----------|-----|-----------------------|--|--| | TPCMP251 | TPCMP251U | Name | I/O | Description | | | | 1 | 4 | Out | 0 | Output | | | | 2 | 2 | -Vs | - | Negative power supply | | | | 3 | 1 | +In | I | Noninverting input | | | | 4 | 3 | -In | I | Inverting input | | | | 5 | 5 | +Vs | - | Positive power supply | | | www.3peak.com 4 / 20 AA20230905A1 Table 2. Pin Functions: TPCMP252 | Pin No. | Name | I/O | Description | |---------|-----------------|-----|-----------------------| | 1 | Out A | 0 | Output | | 2 | −In A | ı | Inverting input | | 3 | +In A | I | Noninverting input | | 4 | -Vs | - | Negative power supply | | 5 | +In B | ı | Noninverting input | | 6 | −In B | I | Inverting input | | 7 | Out B | 0 | Output | | 8 | +V _S | | Positive power supply | www.3peak.com 5 / 20 AA20230905A1 ### **Specifications** ### Absolute Maximum Ratings (1) | | Parameter | Min | Max | Unit | |------------------|---|--------------------------|--------------------|------| | | Supply Voltage, (+V _S) – (-V _S) | | 6.5 | V | | | Input Voltage | (−V _S) − 0.3 | 6.5 | V | | | Input Current: +IN, -IN (2) | -10 | +10 | mA | | | Output Current: OUT | -10 | +10 | mA | | | Output Short-Circuit Duration (3) | | Thermal protection | | | TJ | Maximum Junction Temperature | | 150 | °C | | T _A | Operating Temperature Range | -40 | 125 | °C | | T _{STG} | Storage Temperature Range | – 65 | 150 | °C | | TL | Lead Temperature (Soldering 10 sec) | | 260 | °C | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. #### **ESD, Electrostatic Discharge Protection** | Parameter | | Condition | Level | Unit | |-----------|--------------------------|----------------------------|-------|------| | НВМ | Human Body Model ESD | ANSI/ESDA/JEDEC JS-001 (1) | 4 | kV | | CDM | Charged Device Model ESD | ANSI/ESDA/JEDEC JS-002 (2) | 1.5 | kV | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. #### **Recommended Operating Conditions** | Parameter | | | Тур | Max | Unit | |-----------|-------------------------------|-----|-----|-----|------| | Vs | Supply Voltage, (+VS) – (-VS) | 2.5 | | 5.5 | V | #### **Thermal Information** | Package Type | θ _{JA} | θυς | Unit | |-----------------|-----------------|-----|------| | SOT353 (SC70-5) | 400 | 150 | °C/W | | SOT23-5 | 250 | 81 | °C/W | | SOP8 | 158 | 43 | °C/W | | MSOP8 | 210 | 45 | °C/W | www.3peak.com 6 / 20 AA20230905A1 ⁽²⁾ The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 500 mV beyond the negative power supply, the input current should be limited to less than 10 mA. ⁽³⁾ A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply voltage and how many comparator are shorted. Thermal resistance varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads. ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. #### **Electrical Characteristics** All test conditions: V_S = 5.5 V, T_A = 25°C, unless otherwise noted. | | Parameter | Condition | ons | Min | Тур | Max | Unit | |-------------------|------------------------------------|--|----------------|--------------------------|------|----------------------------|-------| | Power S | Supply | | | | | | | | | Quiescent Current per | V _{CM} = 5.5 V | | | 53 | 83 | μA | | IQ | Comparator | V _{CM} = 5.5 V, T _A = -40°C | to 125°C | | | 100 | μA | | | | V _S = 2.5 V to 5.5 V, V _{CM} | = 0 V | 60 | 80 | | dB | | PSRR | Power Supply Rejection Ratio | $V_S = 2.5 \text{ V to } 5.5 \text{ V}, V_{CM} = 0 \text{ V}, T_A = -40^{\circ}\text{C}$ to 125°C | | 50 | | | dB | | Input C | haracteristics | | | ' | | ' | | | ., | (1) | V _{CM} = 0 V to 5.5 V | | -4 | -0.5 | 4 | mV | | Vos | Input Offset Voltage (1) | V _{CM} = 0 V to 5.5 V, T _A = | -40°C to 125°C | -5 | | 5 | mV | | | Input Offset Voltage Drift (2) | T _A = -40°C to 125°C | | | 2 | | μV/°C | | ., | (4) | V _{CM} = 0 V to 5.5 V | | 1 | 6 | 12 | mV | | V _{HYST} | Input Hysteresis Voltage (1) | V _{CM} = 0 V to 5.5 V, T _A = | -40°C to 125°C | | | 15 | mV | | | Input Hysteresis Voltage Drift (2) | T _A = -40°C to 125°C | | | 10 | | μV/°C | | | J. (2) | V _{CM} = 2.75 V | | | 30 | | pА | | I _B | Input Bias Current (2) | $V_{CM} = 2.75 \text{ V}, T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$ | | | | 240000 | pА | | | 1 10% 10 1(2) | V _{CM} = 2.75 V | | | 30 | | pА | | los | Input Offset Current (2) | V _{CM} = 2.75 V, T _A = -40°C | C to 125°C | | | 240000 | pА | | 0 | Innut Consitons (4) | T 05°0 | Differential | | 2 | | | | C _{IN} | Input Capacitance (4) | T _A = 25°C | Common Mode | | 3 | | pF | | V _{CM} | Common-mode Input Voltage
Range | T _A = -40°C to 125°C | | (-V _S) - 0.1 | | (+V _S)+
0.1 | V | | OMDD | O Mada Dai-atian Dati- | V _{CM} = 0 V to 5.5 V | | 60 | 80 | | dB | | CMRR | Common Mode Rejection Ratio | V _{CM} = 0 V to 5.5 V, T _A = | -40°C to 125°C | 50 | | | dB | | Output | Characteristics | | | | | | | | | | Sink or source current | | 110 | 120 | | mA | | Isc | Output Short-Circuit Current (2) | Sink or source current, | | 90 | | | mΛ | | | | $T_A = -40^{\circ}C \text{ to } 125^{\circ}C$ | | 90 | | | mA | | | | I _{OL} = 4 mA, V _{ID} = -1 V | | | 50 | 80 | mV | | | | $I_{OL} = 4 \text{ mA}, V_{ID} = -1 \text{ V},$ | | | | 100 | mV | | V _{OH} | Output Voltage Swing from | T _A = -40°C to 125°C | | | | | | | | Positive Rail | I _{OL} = 1 mA, V _{ID} = -1 V | | | 15 | 25 | mV | | | | $I_{OL} = 1 \text{ mA}, V_{ID} = -1 \text{ V},$
$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$ | | | | 35 | mV | www.3peak.com 7 / 20 AA20230905A1 ### TPCMP251/TPCMP252 ## 5-V, 120-ns Low-power Comparators with Push-Pull Output | Parameter | | Conditions | Min | Тур | Max | Unit | |------------------|---|--|-----|-----|-----|------| | | Output Voltage Swing from | I _{OL} = 4 mA, V _{ID} = -1 V | | 30 | 55 | mV | | | | $I_{OL} = 4 \text{ mA}, V_{ID} = -1 \text{ V},$
$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$ | | | 75 | mV | | V _{OL} | Negative Rail | I _{OL} = 1 mA, V _{ID} = -1 V | | 10 | 15 | mV | | | | $I_{OL} = 1 \text{ mA}, V_{ID} = -1 \text{ V}, T_A = -40^{\circ}\text{C to}$
125°C | | | 25 | mV | | Switchin | ng Characteristics, T _A = −40°C to | o 125°C ⁽³⁾ | | | | | | _ | Propagation delay time, low-to high | ΔV_{IN} = 1 V, V_{CM} = 0 V, 100mV overdrive ⁽²⁾ | | 120 | 180 | ns | | T _{PLH} | | ΔV_{IN} = 1 V, V_{CM} = 0 V, 20mV overdrive ⁽⁴⁾ | | 220 | | ns | | _ | Propagation delay time, high-to | ΔV_{IN} = 1 V, V_{CM} = 0 V, 100mV overdrive ⁽²⁾ | | 110 | 170 | ns | | T _{PHL} | low | ΔV_{IN} = 1 V, V_{CM} = 0 V, 20mV overdrive ⁽⁴⁾ | | 222 | | ns | | T _R | Rise time | (2) (5) | | 0.9 | | ns | | T _F | Fall time | (2) (5) | | 0.9 | | ns | ⁽¹⁾ The input offset voltage is the average of the input-referred trip points. The input hysteresis is the difference between the input-referred trip points. www.3peak.com 8 / 20 AA20230905A1 ⁽²⁾ Provided by bench test and design simulation. ⁽³⁾ Delay time is measured from mid-point of input to mid-point of output. ⁽⁴⁾ Provided by design simulation. ⁽⁵⁾ Measured between 10% of $V_{\rm S}$ and 90% of $V_{\rm S}$. ### **Electrical Characteristics (continued)** All test conditions: V_S = 2.5 V, T_A = 25°C, unless otherwise noted. | | Parameter | Cond | itions | Min | Тур | Max | Unit | |-------------------|---|---|------------------------------------|-----------------------------|------|----------------------------|----------| | Power S | Supply | | | | | · | | | | Quiescent Current per | V _{CM} = 2.5 V | | | 45 | 80 | μA | | IQ | Comparator | $V_{CM} = 2.5 \text{ V}, T_{A} = -40^{\circ}$ | C to 125°C | | | 100 | μA | | Input Cl | haracteristics | | | | | | <u>'</u> | | V | Innut Offer at Valtage (1) | V _{CM} = 0 V to 2.5 V | | -4 | -0.5 | 4 | mV | | Vos | Input Offset Voltage (1) | V _{CM} = 0 V to 2.5 V, T _A | = −40°C to 125°C | -5 | | 5 | mV | | | Input Offset Voltage Drift (2) | T _A = -40°C to 125°C | | | 2 | | μV/°C | | V | Input Hysteresis Voltage ⁽¹⁾ | V _{CM} = 0 V to 2.5 V | | 1 | 6 | 10 | mV | | V _{HYST} | input Hysteresis voltage (1) | V _{CM} = 0 V to 2.5 V, T _A | = −40°C to 125°C | | | 15 | mV | | | Input Hysteresis Voltage Drift (2) | T _A = -40°C to 125°C | | | 20 | | μV/°C | | ı | Input Bias Current (2) | V _{CM} = 1.25 V | | | 30 | | pА | | I _B | Input Bias Current (=) | $V_{CM} = 1.25 \text{ V}, T_A = -40$ | 0°C to 125°C | | | 240000 | pА | | | In must Office to Commont (2) | V _{CM} = 1.25 V | | | 2 | | pА | | los | Input Offset Current (2) | $V_{CM} = 1.25 \text{ V}, T_A = -40$ |)°C to 125°C | | | 240000 | pА | | | Innut Conscitones (4) | T _A = 25°C | Differential | | 2 | | | | C _{IN} | Input Capacitance (4) | | Common Mode | | 3 | | pF | | V _{CM} | Common-mode Input Voltage
Range | T _A = -40°C to 125°C | | (-V _S)
- 0.1 | | (+V _S)+
0.1 | V | | | | V _{CM} = 0 V to 2.5 V | | 60 | 80 | | dB | | CMRR | Common Mode Rejection Ratio | V _{CM} = 0 V to 2.5 V, T _A | = -40°C to 125°C | 50 | | | dB | | Output | Characteristics | | | | | | • | | | | Sink or source current | t | 24 | 34 | | mA | | Isc | Output Short-Circuit Current (2) | Sink or source current | t, $T_A = -40^{\circ}C$ to | 20 | | | mA | | | | I _{OL} = 4 mA, V _{ID} = −1 V | , | | 90 | 135 | mV | | ., | Output Voltage Swing from | $I_{OL} = 4 \text{ mA}, V_{ID} = -1 \text{ V}, T_{A} = -40 ^{\circ}\text{C} \text{ to } 125 ^{\circ}\text{C}$ | | | | 170 | mV | | V _{OH} | Positive Rail | I _{OL} = 1 mA, V _{ID} = -1 V | , | | 20 | 35 | mV | | | | I _{OL} = 1 mA, V _{ID} = -1 V | ′, T _A = −40°C to 125°C | | | 45 | mV | | | | I _{OL} = 4 mA, V _{ID} = -1 V | , | | 50 | 85 | mV | | \ | Output Voltage Swing from | I _{OL} = 4 mA, V _{ID} = -1 V | ′, T _A = −40°C to 125°C | | | 115 | mV | | V_{OL} | Negative Rail | I _{OL} = 1 mA, V _{ID} = -1 V | , | | 12 | 25 | mV | | | | I _{OL} = 1 mA, V _{ID} = -1 V | ′, T _A = −40°C to 125°C | | | 35 | mV | | Switchi | ng Characteristics, T _A = −40°C to | 125°C ⁽³⁾ | | | | | | | т | Propagation delay time, low-to | $\Delta V_{IN} = 1 \text{ V}, V_{CM} = 0 \text{ V},$ | 100mV overdrive (4) | | 150 | 250 | ns | | T _{PLH} | high | $\Delta V_{IN} = 1 \text{ V}, V_{CM} = 0 \text{ V},$ | 20mV overdrive (4) | | 223 | | ns | www.3peak.com 9 / 20 AA20230905A1 ### TPCMP251/TPCMP252 ## 5-V, 120-ns Low-power Comparators with Push-Pull Output | | Parameter | Conditions | Min | Тур | Max | Unit | |------------------|---------------------------------|---|-----|-----|-----|------| | _ | Propagation delay time, high-to | ΔV_{IN} = 1 V, V_{CM} = 0 V, 100mV overdrive ⁽⁴⁾ | | 110 | 170 | ns | | T _{PHL} | low | ΔV_{IN} = 1 V, V_{CM} = 0 V, 20mV overdrive ⁽⁴⁾ | | 225 | | ns | | T _R | Rise time | (2) (5) | | 1.8 | | ns | | T _F | Fall time | (2) (5) | · | 1.5 | | ns | - (1) The input offset voltage is the average of the input-referred trip points. The input hysteresis is the difference between the input-referred trip points. - (2) Provided by bench test and design simulation. - (3) Delay time is measured from mid-point of input to mid-point of output. - (4) Provided by design simulation. - (5) Measured between 10% of $V_{\rm S}$ and 90% of $V_{\rm S}$. www.3peak.com 10 / 20 AA20230905A1 ### **Typical Performance Characteristics** All test conditions: $V_S = 5 \text{ V}$, $V_{CM} = 0 \text{ V}$, $R_L = \text{Open}$, unless otherwise noted. Figure 1. Supply Current vs. Supply Voltage, Output High Figure 2. Supply Current vs. Temperatu, Output High Figure 3. Propagation Delay, Low to High Figure 4. Propagation Delay, High to Low www.3peak.com 11 / 20 AA20230905A1 ### **Application and Implementation** Note Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. #### **Application Information** #### **Power Supply Layout and Bypass** The power supply pin of the TPCMP25x family is supposed to have a local bypass capacitor (i.e., $0.01~\mu\text{F}$ to $0.1~\mu\text{F}$) within 2 mm for good high-frequency performance. It can also use a bulk capacitor (i.e., $1~\mu\text{F}$ or larger) within 100 mm to provide large, slow currents. This bulk capacitor can be shared with other analog parts. Good ground layout improves performance by decreasing the amount of stray capacitance and noise at the inputs and outputs of the comparator. To decrease stray capacitance, minimize PCB lengths and resistor leads, place external components as close to the comparator pins as possible. #### **Operation Outside of the Common Input Voltage Range** The following is a list of input voltage situation and their outcomes: - 1. When both -IN and +IN are within the common-mode range: - a. If the voltage at the -IN pin is higher than the voltage at the +IN pin and the offset voltage, the output is low and the output MOSFET is sinking current. - b. If the voltage at the -IN pin is lower than the voltage at the +IN pin and the offset voltage, the ouput is high and output MOSFET is sourcing current. - 2. When the voltage at the -IN pin is higher than the common-mode voltage range and the voltage at the +IN pin is within the common-mode voltage range, the output is low and the output MOSFET is sinking current. - 3. When the voltage at the +IN pin is higher than the common-mode voltage range and the voltage at the -IN pin is within the common-mode voltage range, the output is high impedance. - 4. When the voltage at the −IN and +IN pins are both higher than the common-mode voltage range, the output is in an uncertain state. www.3peak.com 12 / 20 AA20230905A1 #### **Typical Application** #### **IR Receiver** The device is an ideal candidate to be used as an infrared receiver shown in Figure 4. The infrared photo diode creates a current relative to the amount of infrared light present. The current creates a voltage across RD. When this voltage level crosses the voltage applied by the voltage divider to the inverting input, the output transitions. Optional Ro provides additional hysteresis for noise immunity. Figure 5. Typical Application Circuit www.3peak.com 13 / 20 AA20230905A1 # **Tape and Reel Information** | Order Number | Package | D1
(mm) | W1
(mm) | A0
(mm) | B0
(mm) | K0
(mm) | P0
(mm) | W0
(mm) | Pin1
Quadrant | |----------------|-----------------|------------|------------|------------|------------|------------|------------|------------|------------------| | TPCMP251-S5TR | SOT23-5 | 179 | 12 | 3.3 | 3.25 | 1.4 | 4 | 8 | Q3 | | TPCMP251U-S5TR | SOT23-5 | 179 | 12 | 3.3 | 3.25 | 1.4 | 4 | 8 | Q3 | | TPCMP251-SC5R | SOT353 (SC70-5) | 178 | 12.1 | 2.4 | 2.5 | 1.2 | 4 | 8 | Q3 | | TPCMP251U-SC5R | SOT353 (SC70-5) | 178 | 12.1 | 2.4 | 2.5 | 1.2 | 4 | 8 | Q3 | | TPCMP252-SO1R | SOP8 | 330 | 17.6 | 6.5 | 5.4 | 2 | 8 | 12 | Q1 | | TPCMP252-VS1R | MSOP8 | 330 | 17.6 | 5.2 | 3.3 | 1.3 | 8 | 12 | Q1 | www.3peak.com 14 / 20 AA20230905A1 ## **Package Outline Dimensions** #### SOT23-5 www.3peak.com 15 / 20 AA20230905A1 #### SOT353-5 www.3peak.com 16 / 20 AA20230905A1 #### SOP8 www.3peak.com 17 / 20 AA20230905A1 #### MSOP8 www.3peak.com 18 / 20 AA20230905A1 ### **Order Information** | Order Number | Operating Temperature
Range | Package | Marking Information | MSL | Transport Media,
Quantity | Eco Plan | |-------------------------------|--------------------------------|----------------|---------------------|------|------------------------------|----------| | TPCMP251-S5TR | −40 to 125°C | SOT23-5 | A20 | MSL2 | Tape and Reel,3000 | Green | | TPCMP251U-S5TR | −40 to 125°C | SOT23-5 | A21 | MSL2 | Tape and Reel,3000 | Green | | TPCMP251-SC5R ⁽¹⁾ | −40 to 125°C | SOT353(SC70-5) | A20 | MSL2 | Tape and Reel,3000 | Green | | TPCMP251U-SC5R ⁽¹⁾ | −40 to 125°C | SOT353(SC70-5) | A21 | MSL2 | Tape and Reel,3000 | Green | | TPCMP252-SO1R ⁽¹⁾ | −40 to 125°C | SOP8 | CM252 | MSL2 | Tape and Reel,4000 | Green | | TPCMP252-VS1R | −40 to 125°C | MSOP8 | CM252 | MSL2 | Tape and Reel,3000 | Green | ⁽¹⁾ For future products, contact the 3PEAK factory for more information and samples. Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances. #### IMPORTANT NOTICE AND DISCLAIMER Copyright[©] 3PEAK 2012-2024. All rights reserved. **Trademarks.** Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK. **Performance Information.** Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product. **Disclaimer.** 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use. www.3peak.com 20 / 20 AA20230905A1