

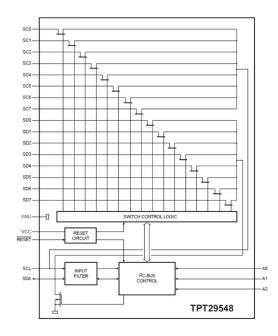
Features

- Bidirectional Translator of 1:8 I²C Switch
- Active-Low Reset Input
- Three Address Terminals, Allowing up to 8 Devices on the I²C Bus
- Operating Power-Supply Voltage Range: 2.3 V ~ 5.5 V
- Allows Voltage-Level Translation between 2.5 V, 3.3 V, and 5 V Buses
- Support Standard Mode and Fast Mode I²C Devices , 0 to 400-kHz Clock Frequency
- Low RON Switches
- Latch-Up Performance Exceeds 200 mA per JESD 78
- ESD Protection Exceeds JESD 22
 - 3.5 kV Human-Body Model
 - 1.5 kV Charged-Device Model
- AEC-Q100 Qualified

Applications

- Servers/Storages
- · Routers (Telecom Switching Equipment)
- Factory Automation
- Products With I²C Slave Address Conflicts (e.g., Multiple, Identical Temp Sensors)

Description


The TPT29548T is a 1:8 bidirectional translating I^2C switch, and Q100 qualified. The SCL/SDA upstream pair fans out to eight downstream channels. Any single SCn/SDn channel or combination of channels can be selected, determined by the programmable control register.

If one of the downstream I^2C buses is stuck in a low state, then an active-low reset (\overline{RESET}) input helps the TPT29548T to recover. Pulling \overline{RESET} low resets the I^2C state machine and causes all the channels to be deselected, as does the internal power-on reset function.

The pass gates of the switches are constructed such that the VCC terminal can be used to limit the maximum high voltage, which will be passed by the TPT29548T. This allows the use of different bus voltages on each pair, so that 2.5-V, or 3.3-V parts can communicate with 5-V parts, without any additional protection. External pull-up resistors pull the bus up to the desired voltage level for each channel. All I/O terminals are 5.5 V tolerant.

TPT29548T is available in the QFN24L package and is characterized from -40° C to $+125^{\circ}$ C.

Functional Block Diagram

Table of Contents

Features	1
Applications	1
Description	1
Functional Block Diagram	1
Revision History	3
Pin Configuration and Functions	4
Specifications	6
Absolute Maximum Ratings ⁽¹⁾	6
ESD, Electrostatic Discharge Protection	6
Recommended Operating Conditions	7
Thermal Information	7
Electrical Characteristics - DC Parameters	8
Electrical Characteristics - DC Parameters (continuned)	10
I ² C Interface Timing Requirements ⁽¹⁾	11
Switching Characteristics	12
Parameter Measurement Waveforms	12
Detailed Description	13
Overview	13
Functional Block Diagram	13
Feature Description	14
Device Address	14
Tape and Reel Information	16
Package Outline Dimensions	17
QFN4X4-24	17
Order Information	18
IMPORTANT NOTICE AND DISCLAIMER	19

Revision History

Date	Revision	Notes
2024-04-15	Rev. A0	Released Version

www.3peak.com 3 / 20 CA20230905A0

Pin Configuration and Functions

TPT29548T QFN4X4-24 Package Top View

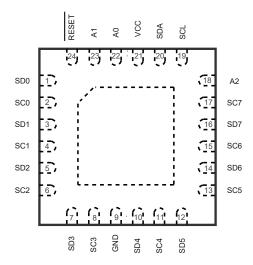


Table 1. Pin Functions: TPT29548T

Pin	Name	I/O	Description
22	A0	Input	Address input 0. Connect directly to VCC or ground
23	A1	Input	Address input 1. Connect directly to VCC or ground
24	RESET	Input	Reset input, active LOW. Connect to VCC or pull up the power of the master side through a pull-up resistor, if not used
1	SD0	I/O	Data 0. Connect to the power of slave channel 0 through a pull-up resistor
2	SC0	I/O	Clock 0. Connect to the power of slave channel 0 through a pull-up resistor
3	SD1	I/O	Data 1. Connect to the power of slave channel 1 through a pull-up resistor
4	SC1	I/O	Clock 1. Connect to the power of slave channel 1 through a pull-up resistor
5	SD2	I/O	Data 2. Connect to the power of slave channel 2 through a pull-up resistor
6	SC2	I/O	Clock 2. Connect to the power of slave channel 2 through a pull-up resistor
7	SD3	I/O	Data 3. Connect to the power of slave channel 3 through a pull-up resistor
8	SC3	I/O	Clock 3. Connect to the power of slave channel 3 through a pull-up resistor
9	GND	GND	Ground
10	SD4	I/O	Data 4. Connect to the power of slave channel 4 through a pull-up resistor
11	SC4	I/O	Clock 4. Connect to the power of slave channel 4 through a pull-up resistor
12	SD5	I/O	Data 5. Connect to the power of slave channel 5 through a pull-up resistor
13	SC5	I/O	Clock 5. Connect to the power of slave channel 5 through a pull-up resistor
14	SD6	I/O	Data 6. Connect to the power of slave channel 6 through a pull-up resistor
15	SC6	I/O	Clock 6. Connect to the power of slave channel 6 through a pull-up resistor

www.3peak.com 4 / 20 CA20230905A0

Pin	Name	I/O	Description
16	SD7	I/O	Data 7. Connect to the power of slave channel 7 through a pull-up resistor
17	SC7	I/O	Clock 7. Connect to the power of slave channel 7 through a pull-up resistor
18	A2	Input	Address input 2. Connect directly to VCC or ground
19	SCL	Input	Clock bus. Connect to VCC through a pull-up resistor
20	SDA	Input	Data bus. Connect to VCC through a pull-up resistor
21	VCC	Supply	Supply voltage

www.3peak.com 5 / 20 CA20230905A0

Specifications

Absolute Maximum Ratings (1)

	Parameter	Min	Max	Unit
Vcc	Supply Voltage	-0.5	7	V
Vı	Input Voltage	-0.5	7	V
I _{IK}	Input Clamp Current, V _I < 0		±20	mA
lok	Output Clamp Current, Vo< 0		±25	mA
Icc	Maximum Junction Temperature		±100	mA
TJ	Operating Temperature Range		125	°C
T _A	Operating Temperature Range	-45	125	°C
T _{stg}	Storage Temperature	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

Parameter		Condition	Value	Unit
НВМ	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 (1)	3.5	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 (2)	1.5	kV

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

www.3peak.com 6 / 20 CA20230905A0

⁽²⁾ This data was taken with the JEDEC low effective thermal conductivity test board.

⁽³⁾ This data was taken with the JEDEC standard multilayer test boards.

⁽²⁾ JEDEC document JEP157 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

	Pa	arameter	Min	Max	Unit
Vcc	Supply Voltage		2.3	5.5	٧
.,		SCL, SDA	0.7 × V _{CC}	5.5	V
ViH	High-Level Input Voltage	A2 ~ A0, RESET	0.7 × V _{CC}	5.5	V
V	V _{IL} Low-Level Input Voltage	SCL, SDA	-0.5	0.3 × V _{CC}	V
VIL LC		A2 ~ A0, RESET	-0.5	0.3 × V _{CC}	V

Thermal Information

Package Type	θυΑ	Ө лс	Unit
QFN24	65	28	°C/W

www.3peak.com 7 / 20 CA20230905A0

Electrical Characteristics - DC Parameters

All test conditions: V_{CC} = 2.3 V ~ 3.6 V, T_A = -40°C ~ +125°C, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply						
	Supply Current in Operating	V _{CC} = 2.3~3.6 V; no load; V _I = V _{CC} or GND; f _{SCL} = 100 kHz		10	20	μΑ
I _{DD}	Mode Standby Current	V _{CC} = 2.3~3.6 V; no load; V _I = V _{CC} or GND; f _{SCL} = 400 kHz		20	30	μA
Istb	Standby Current	V_{CC} = 2.3~3.6 V; no load; V_I = V_{CC} or GND		1.8	3	μΑ
V	Power-on Reset Voltage , V _{CC} Rising	no lood: W = V or CND		1.25	1.45	V
V _{POR}	Power-on Reset Voltage , Vcc Falling	no load; V _I = V _{CC} or GND	0.8	1.2		V
Input SCL	; Input/Output SDA					
V_{IL}	Low-level Input Voltage	V _{CC} = 2.3~3.6 V			0.3V _{CC}	V
V _{IH}	High-level Input Voltage	V _{CC} = 2.3~3.6 V	0.7Vcc			V
	Low-level Output Current, SDA	V _{CC} = 2.3~3.6 V, V _{OL} = 0.4 V	3			mA
I _{OL}	Low-level Output Current, SDA	V _{CC} = 2.3~3.6 V, V _{OL} = 0.6 V	6			mA
I <u>L</u>	Leakage Current	V _I = V _{CC} or GND	-1	0.1	1	μA
Ci	Input Capacitance (1)	V _I = GND		15		pF
Select Inp	uts A0 to A2, RESET		<u>'</u>			
VIL	Low-level Input Voltage	Vcc = 2.3~3.6 V			0.3Vcc	V
V _{IH}	High-level Input Voltage	V _{CC} = 2.3~3.6 V	0.7V _{CC}			V
ILI	Input Leakage Current	pin at V _{CC} or GND	-1	0.1	1	μA
Ci	Input Capacitance (1)	V _I = GND		3		pF
Pass Gate						
	ON state Desistance	V_{CC} = 2.3 V to 2.7 V; V_{O} = 0.4 V; I_{O} = 10 mA	7	30	45	Ω
R_{on}	ON-state Resistance	V _{CC} = 3.0 V to 3.6 V; V _O = 0.4 V; I _O = 15 mA	5	20	35	Ω
		$Vi(sw) = V_{CC} = 2.5 \text{ V};$ $Io(sw) = -100 \mu\text{A}$		1.6		V
Ma(avi)		Vi(sw) = V_{CC} = 2.3 V to 2.7 V; Io(sw) = -100 μ A	1.1		2.0	V
Vo(sw)	Switch Output Voltage (1)	Vi(sw) = V _{CC} = 3.0 V; Io(sw) = -100 μA		2.0		V
		Vi(sw) = V_{CC} = 3.0 V to 3.6 V; Io(sw) = -100 μ A	1.6		2.8	V

www.3peak.com 8 / 20 CA20230905A0

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
IL	Leakage Current	V _I = VCC or GND	-1	0.1	1	μA
Cio	Input/Output Capacitance (1)	V _I = GND		3		pF

⁽¹⁾ Parameters are provided by lab bench tests and design simulation. Not tested in production.

www.3peak.com 9 / 20 CA20230905A0

Electrical Characteristics - DC Parameters (continuned)

All test conditions: V_{CC} = 4.5 V ~ 5.5 V, T_A = -40°C ~ +125°C, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply						
	Supply Current in Operating	V_{CC} = 5.5 V; no load; V_{I} = V_{CC} or GND; f_{SCL} = 100 kHz		5	35	μA
I _{DD}	Mode	V_{CC} = 5.5 V; no load; V_{I} = V_{CC} or GND; f_{SCL} = 400 kHz		14	45	μA
Istb	Standby Current	V_{CC} = 5.5 V; no load; V_{I} = V_{CC} or GND		1.8	3	μA
	Power-on Reset Voltage , V _{CC} Rising	and the day of the court of the		1.25	1.45	V
V _{POR}	Power-on Reset Voltage , Vcc Falling	no load; V _I = V _{CC} or GND	0.8	1.2		V
Input SCL	; Input/Output SDA					
V _{IL}	Low-level Input Voltage	V _{CC} = 5.5 V			0.3V _{CC}	V
VIH	High-level Input Voltage	V _{CC} = 5.5 V	0.7Vcc			V
	Low-level Output Current, SDA	V _{CC} = 5.5 V, V _{OL} = 0.4 V	3			mA
I _{OL}	Low-level Output Current, SDA	V _{CC} = 5.5 V, V _{OL} = 0.6 V	6			mA
IL	Leakage Current	V _I = V _{CC} or GND	-1	0.1	1	μA
Ci	Input Capacitance (1)	$V_i = GND^{(1)}$		15		pF
Select Inp	uts A0 to A2, RESET					
VIL	Low-level Input Voltage	V _{CC} = 5.5 V			0.3Vcc	V
V _{IH}	High-level Input Voltage	V _{CC} = 5.5 V	0.7V _{CC}			V
ILI	Input Leakage Current	pin at V _{CC} or GND	-1	0.1	1	μA
Ci	Input Capacitance (1)	V _I = GND ⁽¹⁾		3		pF
Pass Gate						
Ron	ON-state Resistance	V_{CC} = 4.5 V to 5.5 V; V_{O} = 0.4 V; I_{O} = 15 mA	4	7	20	Ω
Malari	Constants Octavitative (1)	Vi(sw) = V _{CC} = 5.0 V; Io(sw) = -100 μA		3.55		V
Vo(sw)	Switch Output Voltage (1)	$Vi(sw) = V_{CC} = 4.5 \text{ V to } 5.5 \text{ V};$ $Io(sw) = -100 \mu A$	2.6		4.5	V
IL	Leakage Current	V _I = VCC or GND	-1	0.1	1	μΑ
Cio	Input/Output Capacitance (1)	V _I = GND		3		pF

⁽¹⁾ Parameters are provided by lab bench tests and design simulation. Not tested in production.

www.3peak.com 10 / 20 CA20230905A0

I²C Interface Timing Requirements ⁽¹⁾

Over recommended operating free-air temperature range, unless otherwise noted.

	Description		I ² C Normal		I ² C BUS-Fast		
Symbol		Condition	Min	ode Max	Min	de Max	Unit
f _{scl}	I ² C clock frequency		0	100	0	400	kHz
t _{sch}	I ² C clock high time		4		0.6		μs
t _{scl}	I ² C clock low time		4.7		1.3		μs
t _{sp}	I ² C spike time			50		50	ns
t _{sds}	I ² C serial-data setup time		250		100		ns
t _{sdh}	I ² C serial data hold time		0		0		ns
t _{icr}	I ² C input rise time			1000	20	300	ns
t _{icf}	I ² C input fall time ⁽¹⁾			300	20 + 0.1Cb	300	ns
t _{ocf}	I ² C output fall time ⁽¹⁾	10-pF to 400-pF bus		300	20 + 0.1Cb	300	ns
t _{buf}	I ² C bus free time between stop and start		4.7		1.3		μs
t _{sts}	I ² C start or repeated start condition setup		4.7		0.6		μs
t _{sth}	I ² C start or repeated start condition hold		4		0.6		μs
t _{sps}	I ² C stop condition setup		4		0.6		μs
t _{vd(data)}	Valid data time	SCL low to SDA output valid		3.5		0.9	μs
$t_{\text{vd(ack)}}$	Valid data time of ACK condition	ACK signal from SCL low to SDA (out) low		3.5		0.9	μs
t _{PD}	Propagation delay ⁽²⁾	from SDA to SDx, or SCL to SCx		0.3		0.3	ns
Сь	I ² C bus capacitive load ⁽¹⁾			400		400	pF

⁽¹⁾ Cb is the total capacitance of one bus line in pF.

www.3peak.com 11 / 20 CA20230905A0

⁽²⁾ The propagation delay is calculated from the 20 typical Ron and the 15-pF load capacitance.

⁽³⁾ The parameter refers I²C standard, NOT tested in the production.

Switching Characteristics

Over recommended operating free-air temperature range, $C_L \le 100$ pF, unless otherwise noted.

Symbol	Description	Condition	Min	Max	Unit
t _{w(rst)L}	Low-level reset time		4		ns
t _{rst}	Reset time	SDA clear		500	ns
trec;sta	Recovery time to START condition		0		ns

Parameter Measurement Waveforms

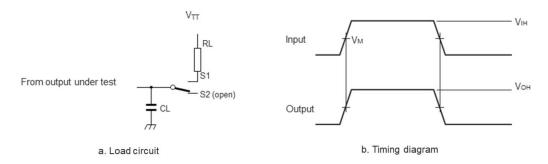


Figure 1. Load Circuit for Outputs

www.3peak.com 12 / 20 CA20230905A0

Detailed Description

Overview

The TPT29548T is a 1:8 bidirectional translating I²C switch, and Q100 qualified. The SCL/SDA upstream pair fans out to eight downstream channels. Any single SCn/SDn channel or combination of channels can be selected, determined by the programmable control register.

If one of the downstream I^2C buses is stuck in a low state, then an active-low reset (\overline{RESET}) input helps the TPT29548T to recover. Pulling \overline{RESET} low resets the I^2C state machine and causes all the channels to be deselected, as does the internal power-on reset function.

The pass gates of the switches are constructed such that the VCC terminal can be used to limit the maximum high voltage, which will be passed by the TPT29548T. This allows the use of different bus voltages on each pair, so that 2.5-V, or 3.3-V parts can communicate with 5-V parts, without any additional protection. External pull-up resistors pull the bus up to the desired voltage level for each channel. All I/O terminals are 5.5-V tolerant.

TPT29548T removed the reserved register 0X0C, and QFN4X4-24 pin1 is in the Q2 quadrant.

Functional Block Diagram

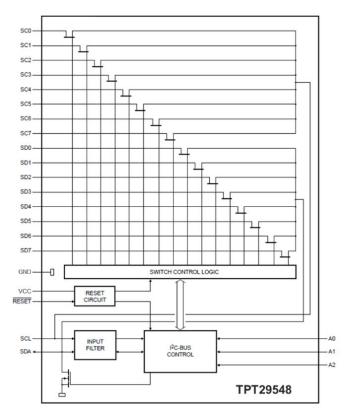


Figure 2. Functional Block Diagram

www.3peak.com 13 / 20 CA20230905A0

Feature Description

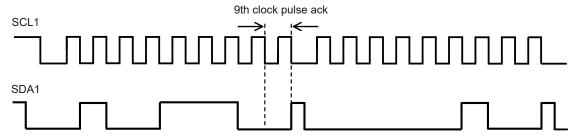


Figure 3. I²C BUS (2.3 V \sim 5.5 V) Waveform

Device Address

Following a START condition, the bus master must output the address of the slave it is accessing. To conserve power, no internal pull-up resistors are incorporated on the hardware selectable address pins and they must be pulled HIGH or LOW. The address of the TPT29548T is shown below.

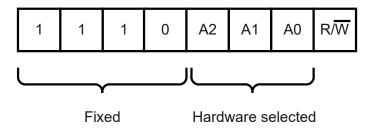


Figure 4. Slave Device Address

Control Register

Following the successful acknowledgment of the slave address, the bus master will send a byte to the TPT29548T, which will be stored in the control register. If multiple bytes are received by the TPT29548T, it will save the last byte received. This register can be written and read via the I^2C bus.

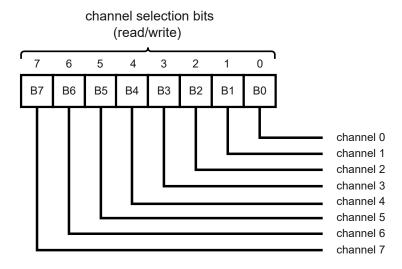


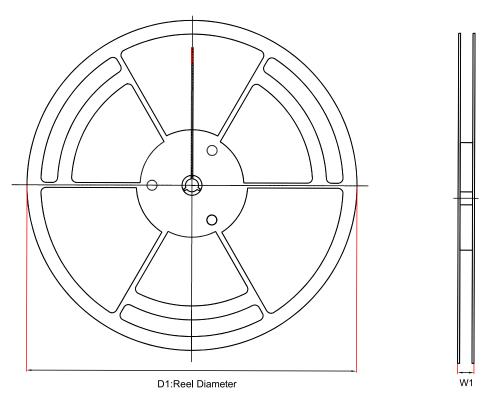
Figure 5. Control Register

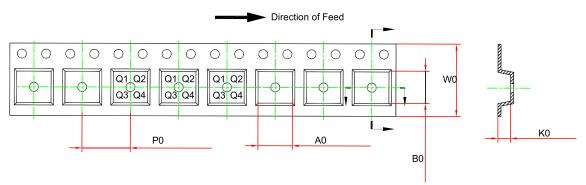
www.3peak.com 14 / 20 CA20230905A0

Control Register Definition

One or several SCx/SDx downstream pairs, or channels, are selected by the contents of the control register. This register is written after the TPT29548T has been addressed. The 2 LSBs of the control byte are used to determine which channel is to be selected. When a channel is selected, the channel will become active after a STOP condition has been placed on the I²C bus. This ensures that all SCx/SDx lines will be in a HIGH state when the channel is made active so that no false conditions are generated at the time of connection.

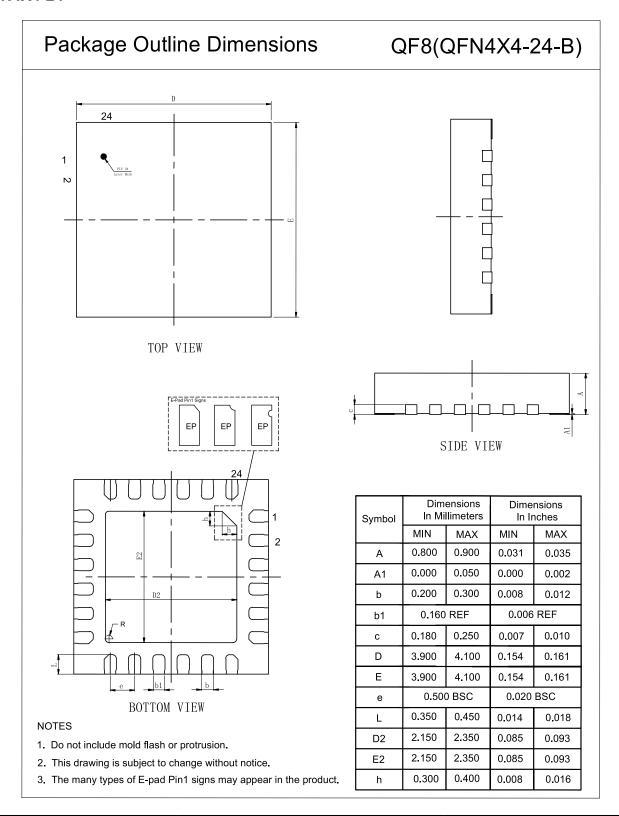
Table 2. Control Register: Write-Channel Selection; Read-Channel Status


B7	В6	B5	B4	В3	B2	B1	В0	Command
х	х	x	x	x	x	x	0	Channel 0 disable
х	х	х	x	x	х	х	1	Channel 0 enable
х	х	x	x	x	x	0	x	Channel 1 disable
х	х	x	x	x	x	1	x	Channel 1 enable
х	х	х	х	х	0	х	x	Channel 2 disable
х	х	х	х	х	1	х	x	Channel 2 enable
х	х	х	х	0	x	х	x	Channel 3 disable
х	х	x	x	1	x	x	x	Channel 3 enable
х	х	х	0	х	х	х	x	Channel 4 disable
х	х	x	1	x	x	х	x	Channel 4 enable
х	х	0	x	x	x	x	x	Channel 5 disable
х	х	1	х	х	х	х	x	Channel 5 enable
х	0	х	х	х	х	х	х	Channel 6 disable
х	1	х	х	х	х	х	х	Channel 6 enable
0	х	х	х	х	х	х	х	Channel 7 disable
1	x	x	x	x	x	x	х	Channel 7 enable


⁽¹⁾ Multiple channels can be enabled at the same time. Example: B7 = 0, B6 = 1, B5 = 0, B4 = 0, B3 = 1, B2 = 1, B1 = 0, B0 = 0, which means that channels 7, 5, 4, 1, and 0 are disabled and channels 6, 3, and 2 are enabled. Care should be taken not to exceed the maximum bus capacitance. The default condition is all zeroes.

www.3peak.com 15 / 20 CA20230905A0

Tape and Reel Information


Order Number	Package	D1 (mm)	A0 (mm)	K0 (mm)	W0 (mm)	W1 (mm)	B0 (mm)	P0 (mm)	Pin1 Quadrant
TPT29548T- QF8R-S	24-Pin QFN	330	4.3	1.1	12	17.6	4.3	8	Q2

www.3peak.com 16 / 20 CA20230905A0

Package Outline Dimensions

QFN4X4-24

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPT29548T-QF8R-S	−40 to 125°C	QFN4X4-24	9548T	MSL3	3,000	Green

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

www.3peak.com 18 / 20 CA20230905A0

IMPORTANT NOTICE AND DISCLAIMER

Copyright[©] 3PEAK 2012-2024. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.

www.3peak.com 19 / 20 CA20230905A0

This page intentionally left blank