

UF4SC120023B7S

Part Number	Package	Marking
UF4SC120023B7S	D ² PAK-7L	UF4SC120023B7S

1200V-23m Ω SiC FET

Rev. A. June 2023

Description

The UF4SC120023B7S is a 1200V, $23m\Omega$ G4 SiC FET. It is based on a unique 'cascode' circuit configuration, in which a normally-on SiC JFET is co-packaged with a Si MOSFET to produce a normally-off SiC FET device. The device's standard gate-drive characteristics allows use of off-the-shelf gate drivers hence requiring minimal re-design when replacing Si IGBTs, Si superjunction devices or SiC MOSFETs. Available in the space-saving D²PAK-7L package which enables automated assembly, this device exhibits ultra-low gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads and any application requiring standard gate drive.

Features

- On-resistance R_{DS(on)}: 23mΩ (typ)
- Operating temperature: 175°C (max)
- Excellent reverse recovery: Q_{rr} = 243 nC
- Low body diode V_{FSD}: 1.2V
- Low gate charge: Q_G = 37.8nC
- Threshold voltage V_{G(th)}: 4.8V (typ) allowing 0 to 15V drive
- Low intrinsic capacitance
- ESD protected: HBM class 2 and CDM class C3
- D²PAK-7L package for faster switching, clean gate waveforms

Typical applications

- EV charging
- PV inverters
- Switch mode power supplies
- Power factor correction modules
- Induction heating

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V_{DS}		1200	V
Gate-source voltage	V_{GS}	DC	-20 to +20	V
Continuous drain current ¹	I_	T _C = 25°C	72	Α
Continuous drain current	I _D	T _C = 100°C	51	Α
Pulsed drain current ²	I _{DM}	T _C = 25°C	204	Α
Single pulsed avalanche energy ³	E _{AS}	L=15mH, I _{AS} =4.1A	126	mJ
SiC FET dv/dt ruggedness	dv/dt	V _{DS} ≤ 800V	150	V/ns
Power dissipation	P _{tot}	T _C = 25°C	385	W
Maximum junction temperature	$T_{J,max}$		175	°C
Operating and storage temperature	T _J , T _{STG}		-55 to 175	°C
Reflow soldering Temperature	T_{solder}	reflow MSL 1	245	°C

- 1. Limited by $T_{J,\text{max}}$
- 2. Pulse width t_p limited by $T_{J,max}$
- 3. Starting $T_J = 25^{\circ}C$

Thermal Characteristics

Parameter	Symbol	Test Conditions	Value			Units
Parameter			Min	Тур	Max	Offics
Thermal resistance, junction-to-case	$R_{\theta JC}$			0.3	0.39	°C/W

Electrical Characteristics (T_J = +25°C unless otherwise specified)

Typical Performance - Static

Parameter	Symbol	Test Conditions	Value			Units
Parameter			Min	Тур	Max	UIIILS
Drain-source breakdown voltage	BV _{DS}	V_{GS} =0V, I_D =1mA	1200			V
		V _{DS} =1200V,		2	60	- μΑ
Total drain leakage current	1	$V_{GS}=0V, T_J=25$ °C				
Total dialifieakage current	I _{DSS}	V _{DS} =1200V,		20		
		$V_{GS}=0V, T_J=175$ °C		20		
Total gate leakage current	I _{GSS}	V _{DS} =0V, T _J =25°C,		6	±20	μА
Total gate leakage current		V _{GS} =-20V / +20V				
	R _{DS(on)}	V_{GS} =12V, I_{D} =40A,		23	30	
		T _J =25°C				
Duain agunas an masiatanas		V _{GS} =12V, I _D =40A,		42		
Drain-source on-resistance		T _J =125°C				mΩ -
		$V_{GS}=12V, I_{D}=40A,$		62		
		T _J =175°C				
Gate threshold voltage	V _{G(th)}	V_{DS} =5V, I_{D} =10mA	4	4.8	6	V
Gate resistance	R_{G}	f=1MHz, open drain		4.5		Ω

Typical Performance - Reverse Diode

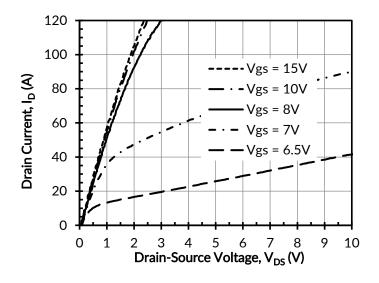
Parameter	Symbol	Test Conditions		Lleite		
Parameter			Min	Тур	Max	Units
Diode continuous forward current ¹	I _S	T _C = 25°C			72	Α
Diode pulse current ²	I _{S,pulse}	T _C = 25°C			204	Α
Forward voltage	V _{FSD}	V_{GS} =0V, I_{S} =20A, T_{J} =25°C	1.2		1.4	V
		V _{GS} =0V, I _S =20A, T _J =175°C		1.65		
Reverse recovery charge	Q _{rr}	V_R =800V, I_S =40A, V_{GS} =0V, R_G =50 Ω		243		nC
Reverse recovery time	t _{rr}	di/dt=2000A/μs, Τ _J =25°C		26.8		ns
Reverse recovery charge	Q _{rr}	V_R =800V, I_S =40A, V_{GS} =0V, R_G =50 Ω		264		nC
Reverse recovery time	t _{rr}	di/dt=2000A/μs, Τ _J =150°C		28.8		ns

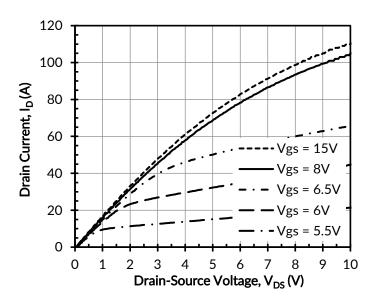
Typical Performance - Dynamic

Parameter	Symbol	Test Conditions	Value			
			Min	Тур	Max	Units
Input capacitance	C _{iss}	V _{DS} =800V, V _{GS} =0V		1430		
Output capacitance	C _{oss}	f=100kHz		85		pF
Reverse transfer capacitance	C _{rss}	T=100KHZ		2		-
Effective output capacitance, energy	-	V _{DS} =0V to 800V,		100		
related	$C_{oss(er)}$	V _{GS} =0V		108		pF
Effective output capacitance, time		V _{DS} =0V to 800V,		200		ъ.Г
related	$C_{oss(tr)}$	V _{GS} =0V		200		pF
C _{OSS} stored energy	E _{oss}	V _{DS} =800V, V _{GS} =0V		35		μJ
Total gate charge	Q_{G}	V _{DS} =800V, I _D =40A,		37.8		
Gate-drain charge	Q_{GD}	$V_{GS} = 0V \text{ to } 15V$		8		nC
Gate-source charge	Q_{GS}	V _{GS} - 0V t013V		11.8		
Turn-on delay time	$t_{d(on)}$	Note 4 and 5,		23		ns
Rise time	t _r	V _{DS} =800V, I _D =40A, Gate		25		
Turn-off delay time	$t_{d(off)}$	Driver =0V to +15V,		64		
Fall time	t_f	$R_{G_ON}=10\Omega$, $R_{G_OFF}=20\Omega$,		10		
Turn-on energy including R _S energy	E_ON	inductive Load, FWD: same device with $V_{GS} = 0V \text{ and } R_G = 20\Omega,$ Snubber: $R_s = 10\Omega,$ $C_s = 100 \text{pF}$		719		
Turn-off energy including R _S energy	E_{OFF}			95		
Total switching energy	E_TOTAL			814		mJ
Snubber R _S energy during turn-on	E _{RS_ON}			8		
Snubber R _S energy during turn-off	E_{RS_OFF}	T _J =25°C		15		
Turn-on delay time	$t_{d(on)}$	Note 4 and 5,		21		
Rise time	t_r	V _{DS} =800V, I _D =40A, Gate		27		
Turn-off delay time	$t_{d(off)}$	Driver =0V to +15V, R_{G_ON} =10 Ω , R_{G_OFF} =20 Ω ,		63		ns
Fall time	t _f			10		
Turn-on energy including R _S energy	E _{ON}	inductive Load, FWD: same device with $V_{GS} = 0V \text{ and } R_G = 20\Omega,$ Snubber: $R_s = 10\Omega,$ $C_s = 100 \text{pF}$ $T_J = 150 ^{\circ}\text{C}$		781		
Turn-off energy including R _S energy	E _{OFF}			111		
Total switching energy	E _{TOTAL}			892		μJ
Snubber R _S energy during turn-on	E _{RS_ON}			11		1
Snubber R _S energy during turn-off	E _{RS_OFF}			15		

^{4.} Measured with the switching test circuit in Figure 26.

^{5.} In this datasheet, all the switching energies (turn-on energy, turn-off energy and total energy) presented in the tables and Figures include the device RC snubber energy losses.




Typical Performance Diagrams

120 100 Drain Current, I_D (A) 80 60 Vgs = 15VVgs = 8V 40 Vgs = 7V **-** Vgs = 6.5V 20 Vgs = 6V 0 5 1 2 10 Drain-Source Voltage, V_{DS} (V)

Figure 1. Typical output characteristics at T_J = - 55°C, tp < 250 μ s

Figure 2. Typical output characteristics at T_J = 25°C, tp < 250 μ s

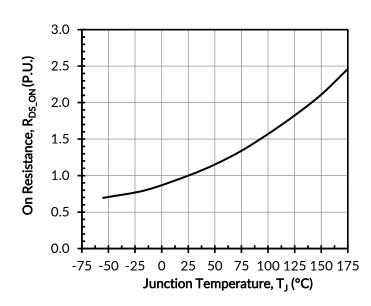
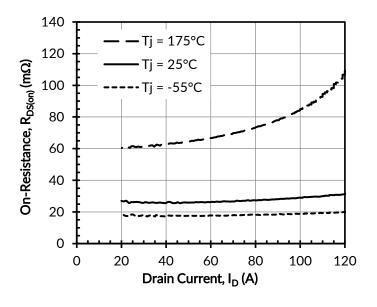


Figure 3. Typical output characteristics at T_J = 175°C, tp < 250 μ s

Figure 4. Normalized on-resistance vs. temperature at V_{GS} = 12V and I_D = 40A



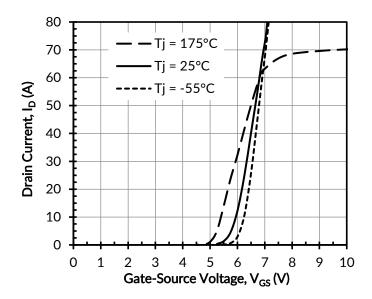
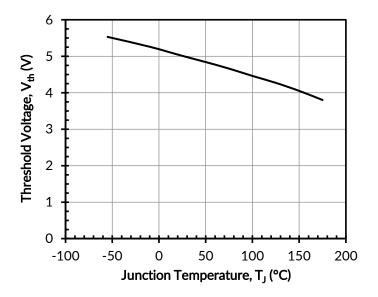



Figure 5. Typical drain-source on-resistances at V_{GS} = 12V

Figure 6. Typical transfer characteristics at $V_{DS} = 5V$

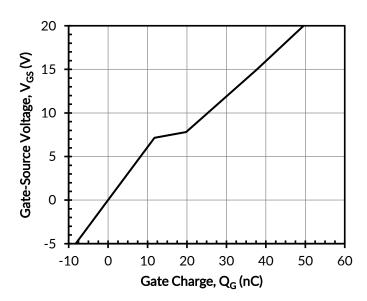


Figure 7. Threshold voltage vs. junction temperature at $V_{DS} = 800 \text{ V}$ Figure 8. Typical gate charge at $V_{DS} = 800 \text{ V}$ Figure 8. Typical gate charge at $V_{DS} = 800 \text{ V}$ Figure 8. Typical gate charge at $V_{DS} = 800 \text{ V}$ Figure 8. Typical gate charge at V_{DS

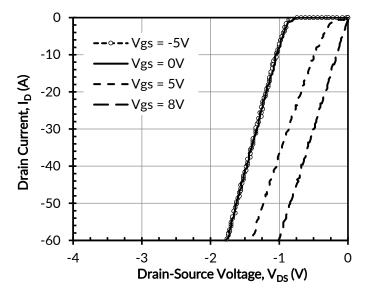
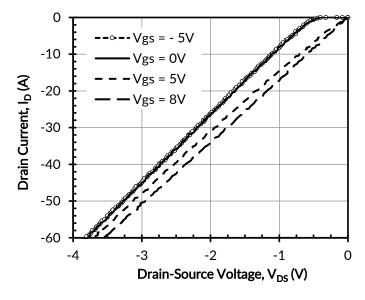



Figure 9. 3rd quadrant characteristics at $T_J = -55$ °C

Figure 10. 3rd quadrant characteristics at T_J = 25°C

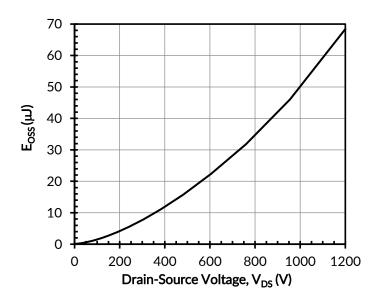
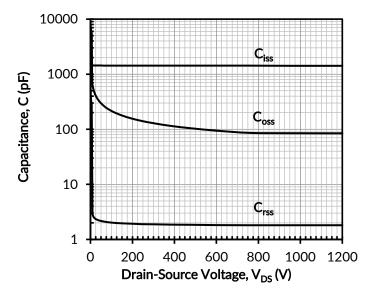
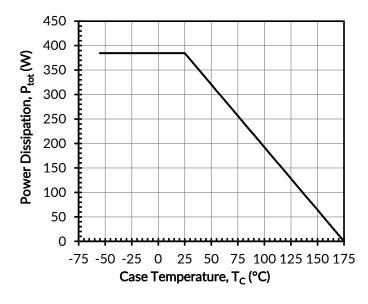


Figure 11. 3rd quadrant characteristics at $T_J = 175$ °C

Figure 12. Typical stored energy in C_{OSS} at $V_{GS} = 0V$





80 70 60 40 40 40 10 -75 -50 -25 0 25 50 75 100 125 150 175 Case Temperature, T_C (°C)

Figure 13. Typical capacitances at f = 100kHz and V_{GS} = 0V

Figure 14. DC drain current derating

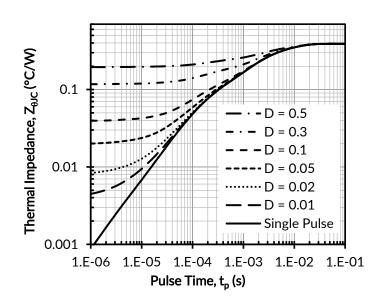


Figure 15. Total power dissipation

Figure 16. Maximum transient thermal impedance

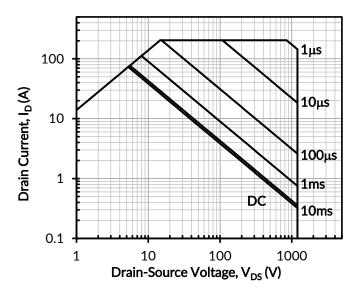


Figure 17. Safe operation area at T_C = 25°C, D = 0, Parameter t_p

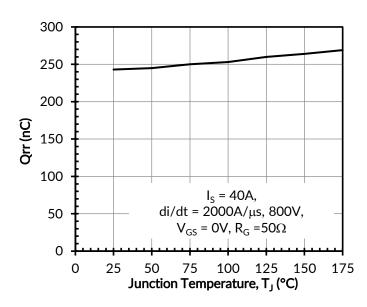


Figure 18. Reverse recovery charge Qrr vs. junction temperature at V_{DS} = 800V

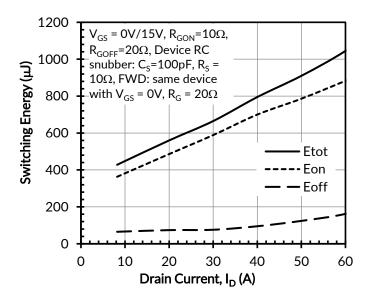


Figure 19. Clamped inductive switching energy vs. drain current at V_{DS} = 800V and T_J = 25°C

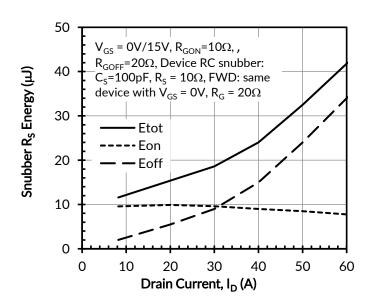
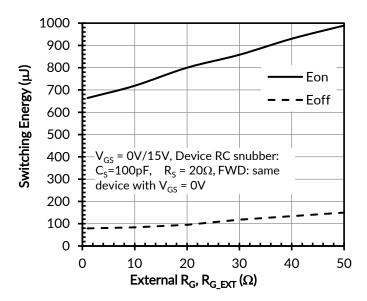
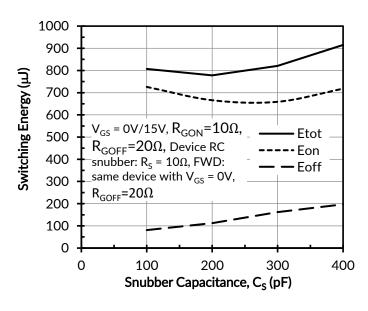


Figure 20. RC snubber energy loss vs. drain current at V_{DS} = 800V and T_J = 25°C





16 14 Snubber R_s Energy (µJ) 12 $V_{GS} = 0V/15V$, Device RC snubber: 10 C_S =100pF, R_S = 10 Ω , FWD: same device with $V_{GS} = 0V$ 8 6 4 Rs_Eon 2 Rs_Eoff 0 10 20 30 40 50 External R_G , $R_{G,EXT}(\Omega)$

Figure 21. Clamped inductive switching energies vs. $R_{G,EXT}$ at V_{DS} = 800V, I_D = 40A, and T_J = 25°C

Figure 22. RC snubber energy loss vs. $R_{G,EXT}$ at V_{DS} = 800V, I_D = 40A, and T_J = 25°C

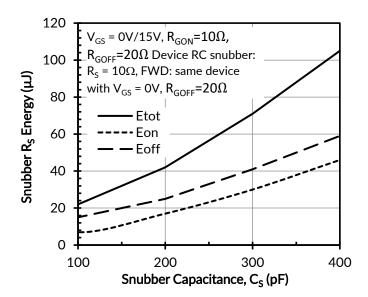
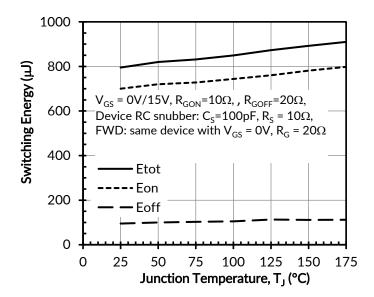


Figure 23. Clamped inductive switching energies vs. snubber capacitance C_S at V_{DS} = 800V, I_D = 40A, and T_J = 25°C

Figure 24. RC snubber energy losses vs. snubber capacitance C_S at V_{DS} = 800V, I_D =40A, and T_J = 25°C



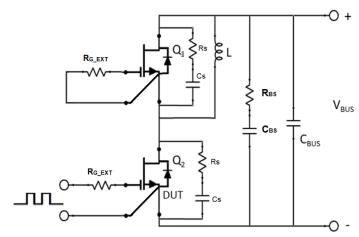


Figure 25. Clamped inductive switching energy vs. junction temperature at V_{DS} =800V and I_{D} =40A

Figure 26.Schematic of the half-bridge mode switching test circuit with device RC snubbers (Rs = 10Ω , Cs = 100pF) and a bus RC snubber (R_{BS} = 2.5Ω , C_{BS}=100nF).

Applications Information

SiC FETs are enhancement-mode power switches formed by a high-voltage SiC depletion-mode JFET and a low-voltage silicon MOSFET connected in series. The silicon MOSFET serves as the control unit while the SiC JFET provides high voltage blocking in the off state. This combination of devices in a single package provides compatibility with standard gate drivers and offers superior performance in terms of low on-resistance ($R_{DS(on)}$), output capacitance (C_{oss}), gate charge (Q_G), and reverse recovery charge (Q_{rr}) leading to low conduction and switching losses. The SiC FETs also provide excellent reverse conduction capability eliminating the need for an external anti-parallel diode. Like other high performance power switches, proper PCB layout design to minimize circuit parasitics is strongly recommended due to the high dv/dt and di/dt rates. An external gate resistor is recommended when the FET is working in the diode mode in order to achieve the optimum reverse recovery performance. For more information on SiC FET operation, see www.unitedsic.com.

A snubber circuit with a small $R_{(G)}$, or gate resistor, provides better EMI suppression with higher efficiency compared to using a high $R_{(G)}$ value. There is no extra gate delay time when using the snubber circuitry, and a small $R_{(G)}$ will better control both the turn-off $V_{(DS)}$ peak spike and ringing duration, while a high $R_{(G)}$ will damp the peak spike but result in a longer delay time. In addition, the total switching loss when using a snubber circuit is less than using high $R_{(G)}$, while greatly reducing $E_{(OFF)}$ from mid-to-full load range with only a small increase in $E_{(ON)}$. Efficiency will therefore improve with higher load current. For more information on how a snubber circuit will improve overall system performance, visit the UnitedSiC website at www.unitedsic.com

Important notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.